
Acumen Journal, Issue 48 © 2012 John Deubert, Acumen Training	� Acumen Journal, Issue 65 © 2012 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, July 2012

Table of Contents

The Acrobat User
JavaScript Reports
Acrobat JavaScript has a Report mechanism that lets you create a report of any data you choose. You have
formatting tools similar to printf; primitive, but surprisingly useful.

PostScript Tech
PostScript User Paths
User paths are nearly unknown to most PostScript programmers. They are easy to construct and use and
certainly look as though they should be useful.

Class Schedule
Aug-Sep-Oct

What’s New?
JavaScript e-book is selling well. Makes me happy.
Also, I’ve been fussing around with the Journal’s format.

 Contact John at Acumen Training
Telephone number, email address, postal address

2.0

Creative Expertise in PostScript, Acrobat, and PDF

T
Acumen

raining
& Services

Acumen Journal: PostScript Tech		 2

PostScript Tech

User Paths
User Paths are a curious part of the PostScript language. They’re easy to construct and use and, by golly, they
look as though they should be useful, but for the life of me I’ve never found a problem for which they are
the best solution. This month, I thought I’d describe them in a bit of detail and see if anyone out there can
suggest a circumstance that cries out for their use.

“What’s a User Path?” You Ask
A user path is a procedure body that draws an unpainted path; that is, it contains calls to moveto, lineto,
arc, etc., but no stroke, fill or other painting operators:

{
	 0 0 85 81 setbbox	 % We haven’t talked about setbbox yet
	 0 50 moveto
	 85 50 lineto
	 16 0 lineto
	 42 81 lineto
	 69 0 lineto
	 closepath
}

To use this procedure, you hand it to one of the specialized user path operators: ufill, ustroke, or
uappend:

{ ... } ufill

As you might imagine, ufill and ustroke paint the path onto the current page and uappend adds the
path to the existing current path.

Easy.

Acumen Journal: PostScript Tech		 3

User Paths

A PostScript fragment that uses the above user path would look something like this:

/StarPath {
	 0 0 85 81 setbbox	 % We haven’t talked about setbbox yet; patience.
	 0 50 moveto
	 85 50 lineto
	 16 0 lineto
	 42 81 lineto
	 69 0 lineto
	 closepath
} def

//StarPath ufill	 % The // keeps the StarPath procedure from executing immediately.

This PostScript code draws a five-pointed start at the origin, as in Figure 1.

User Path Requirements
There are a few requirements attached to the use of user paths.

■	 Operator restrictions - A user path does not have access to the entire PostScript
language; in fact, it may contain only the operator calls listed in Table 1. This
shouldn’t cramp your style much, since the sole purpose of a user path is to
construct a path.

The operator calls may be in the form of the operator names or as operator
objects, as would be the case if you called the bind operator when creating the
user path procedure body:

	 /StarPath	 {
		 ...
	 } bind def

Figure 1. The user path we
are discussing draws a five-
pointed star at the origin.

Table 1 User Path Legal Operators

	 ucache				 lineto				 arc
	 setbbox				 rlineto				 arcn
	 moveto				 curveto				 arct
	 rmoveto				 rcurveto				 closepath

Acumen Journal: PostScript Tech		 4

User Paths

■	 No non-operator names - A user path may not contain any names other than those listed in Table 1. This
means you cannot perform calculations within the procedure body nor may you reference variables or
procedures. The user path may contain only literal numbers and the 12 names listed in Table 1.

■	 Must start with setbbox - The first call in a user path procedure must be a call to the setbbox operator:

	 xll yll xur yur setbbox

This operator takes four numbers as its arguments, representing the x and y coordinates of the lower-left
and upper-right corners of the path’s bounding box, that is, the rectangle that encloses all of the points that
go into defining the path (Figure 2). All of the points used in constructing the path—including Bezier
control points—must lie on or within this rectangle.

Cached User Paths

If you include the ucache operator in your user path procedure body, this instructs the painting operator
(ufill or ustroke) to cache the painted path or fetch the painted path from the cache if it’s already there.
This promises to speed up the painting of repeatedly-used paths significantly.

If used, ucache must be the first operator in the user path; our StarProc path becomes:

/StarPath {
	 ucache
	 0 0 85 81 setbbox
	 0 50 moveto
	 ...
	 closepath
} def

//StarPath ufill

xll,yll

xur,yur

Figure 2. The user cache
bounding box encloses all of
the points that go into the
path definition, including
Bezier curve control points.

Acumen Journal: PostScript Tech		 5

User Paths

Why is there a Double-Slash in our code?

You have certainly noticed that in our call to ufill we double-slashed the name StarPath:

//StarPath ufill

We needed to do this because StarPath is defined as a procedure body. If we had omitted the double-slash

StarPath ufill

PostScript would have looked up the name StarPath immediately and then executed the associated
procedure; ufill would have found an empty stack and died with a stackunderflow error.

Double-slash, you remember (yes, you do), is the “evaluate immediately” delimiter; when a name is preceded
by //, the interpreter (actually, the scanner) immediately looks up the name and pushes its value—
a procedure body, in our case—on the operand stack.

There is an alternative to the double-slash

As an alternative, we could have defined StarPath as a literal array, rather than a procedure body
(procedure bodies are executable arrays, you may recall). This doesn’t particularly simplify our code:

/StarPath {
	 ucache
	 0 0 85 81 setbbox
	 0 50 moveto
	 ...
	 closepath
} cvlit def

StarPath ufill

We got rid of the double-slash here, but we had to add a call to cvlit to the definition of the user path.

Acumen Journal: PostScript Tech		 6

User Paths

It might initially seem that we could make our user path as a literal array by simply replacing the braces with brackets:

/StarPath [
	 ucache
	 ...
	 closepath
] def

StarPath ufill

However, remember that the PostScript interpreter is operating exactly as always in between brackets; if we
used brackets, the interpreter would immediately execute all the bracketed PostScript code. (See the sidebar
for a reminder of how the square brackets work to create an array.)

To get PostScript to defer execution of the operators in the user path definition, we need to enclose them in braces
and then convert the resulting procedure body to a literal array with the cvlit (“convert to literal”) operator.

Not better; not worse. Just different.

So, What’s This Good For?
And that brings us back to my original question: what problem do user paths solve in today’s World of PostScript?

In principal, the benefits that user paths bring to the table are:

■	 Caching - If you use the ucache operator, the painted path may be cached.

Or may not, unfortunately; caching is effectively optional and may not be implemented in a particular
PostScript interpreter. Also, if you are converting your PostScript to pdf with Acrobat Distiller, the user path
disappears altogether; Distiller converts it to a series of repeated instances of moveto, lineto, curveto,
etc. (or, rather, the pdf equivalents: m, l, c, etc.)

How Arrays are Made

Back in the PostScript Foundations class, we
learned that the open and close brackets
are actually a pair of PostScript operators
that together create an array.

Open bracket pushes a mark object on the
stack and that is all it does; the PostScript
interpreter continues executing the
incoming PostScript stream as normal.

Close bracket takes everything off the stack
back to the topmost mark and constructs an
array from those objects.

Thus, the following code creates a
2-element array:

[
	 100
	 200 300 add
]

The resulting array contains the numbers
100 and 500; the add between the
brackets executed as usual.

Acumen Journal: PostScript Tech		 7

User Paths

■	 Dependability - Since user paths can’t have anything in them but numbers and native path operators,
there is no chance that the results will be changed by redefinitions of those operators.

This seems uncompelling, somehow. If I’m writing the PostScript program, then I’m perfectly capable of
the degree of discipline it takes to keep from sabotaging my own code. If the path or painting operators
have been redefined by someone else—by code pre-pended to my own PostScript, perhaps—then
presumably there’s a good reason for it; perhaps my PostScript document is being imposed or otherwise
post-processed.

The alternatives to implementing a repeatedly-used path as a user path are:

■	 A standard PostScript procedure - Just define the same procedure body that constructs the path (minus
the calls to ucache and setbbox) as a regular, ol’ procedure body that you call as usual.

	 /StarPath {
		 0 50 moveto
		 ...
		 closepath
	 } def

	 StarPath fill

One advantage to this method is that you can place the painting operator in the procedure (so it ends
with a call to stroke or fill).

Acumen Journal: PostScript Tech		 8

User PathsUser Paths

■	 A PostScript Form - Make a PostScript form that draws the painted path. This is a bit more work, but is
more-or-less guaranteed to be cached on a PostScript device.

	 /StarForm	 <<
		 /FormType 1
		 /FormBBox [0 0 85 81]
		 /PaintProc	 {
			 pop
			 0 50 moveto
			 ...
			 closepath
		 }
		 /Matrix [1 0 0 1 0 0]
	 >> def

	 StarForm execform

Both of these alternatives are easy and are far more commonly used.

So why use user paths?

That’s the question I pose to you, my readers: have you ever used this mechanism and, if so, why? What made
user paths the perfect solution to the problem you were solving?

As I said when we started, they certainly look as though they should be better than anything else at something.

But, what?

Acumen Journal: PostScript Tech		 9Acumen Journal: PostScript Tech		 9

Acrobat User

The JavaScript Report Object
Try this: type your name into the Text field at right and then click the button.

If you are reading this with Adobe Acrobat or Reader,
what should have happened is the software presented
you with a page similar to that in Figure 1, containing a
brief message that incorporates your name.

Sometimes you need your JavaScript to produce a
“written” document, that is, a separate pdf file that
presents data that the reader can take away; an obvious
example would be a “print a receipt” button.

Acrobat provides a way to do this with its JavaScript
Report object. I talked about this object in my original
JavaScript book, way back in 2002. I dropped it in my
recent re-write of the book and have been feeling guilty
about it, so let me make amends by talking about it here.

Using the Report Object
The JavaScript Report object lets you construct a multi-page pdf document and then open it in Acrobat or
email it to a specified address. The way you do this is straightforward to the point of primitive. You use a handful
of methods to print text, draw horizontal lines, indent, change color, and that’s about it. Pages are assembled
from top, down; you don’t get to place items at arbitrary, randomly-specified positions on the page.

Figure 1. The button on this page uses a Report
object to create a “Greetings” document.

http://www.acumentraining.com/QEDGuides

Acumen Journal: PostScript Tech		 10

Acrobat Title

Acumen Journal: PostScript Tech		 10

Broadly, there are three steps to creating a report in Acrobat JavaScript:

1		 Create the Report object.

2		 Draw on the page with repeated calls to the Report object’s drawing methods.

3		 Create the report’s pdf document, either opening it in Acrobat or emailing it to a specified address.

Here’s the script that created the report in Figure 1.

var rep = new Report()						 // Create a Report object
var name = this.getField("txtName").value	 // Get the Text field’s value

rep.size = 1.4							 // Increase the point size
rep.writeText("Greetings!")				 // Draw the page title
rep.size = 1.0							 // Revert to original point size
rep.divide(2)							 // Draw a horizontal divider line
rep.writeText("\nHi, " + name + ".")		 // Draw a two-line message
rep.writeText("How ya doin'?")
rep.open("Greeting")						 // Open the report as a PDF document

This script gets a new Report object and the value of the txtName Text field. It then prints the following:

■	 The string “Greetings” in a moderately large point size.

■	 A horizontal dividing line.

■	 A two-line text greeting.

The script then opens the report as a pdf document named “Greeting.”

We’ll look at this script in detail in a moment. First, let’s review the tools the Report object makes available to us.

The Fuller Scoop

This article assumes you have at least
minimal knowledge of Acrobat JavaScript.
If you need to acquire this expertise, there
are two documents you can read:

■	If you have little or no programming
experience, I recommend (of course)
Beginning JavaScript for Adobe Acrobat;
This is my own e-book, available at
www.acumentraining.com/QEDGuides.
This e-book will teach you how to add
JavaScript-based features to your Acrobat
forms and, along the way, teach you the
principles of JavaScript programming.

■	If you are an experienced JavaScript
programmer, you should go right to
Adobe’s own, complete documentation
by clicking here. This is a programmer’s
document that assumes you have
good knowledge of programming and
JavaScript.

http://www.acumentraining.com/QEDGuides
http://livedocs.adobe.com/acrobat_sdk/9.1/Acrobat9_1_HTMLHelp/wwhelp/wwhimpl/common/html/wwhelp.htm?context=Acrobat9_HTMLHelp&file=JavaScript_SectionPage.70.1.html

Acumen Journal: PostScript Tech		 11

Acrobat Title

Acumen Journal: PostScript Tech		 11

Report Object Properties and Methods
The Report object supplies a collection of properties and methods that let us assemble a useful, if not
terribly sophisticated, multi-page report. Below is a compendium of the most useful of these; there are a few
others, but they can be safely ignored for the moment.

Report Object Properties

Table 1 lists the most useful Report object properties.

color	 Remember from the Beginning JavaScript book that JavaScript defines a Color
object that supplies values such as Color.red that may be used to define
color within your JavaScript code. The following bit of code would print a line
of red text.

				 myReport.color = Color.red
				 myReport.writeText("Was my face red!")

size	 This, surprisingly, is a multiplier for the “standard text size,” which is not explicitly defined, as
far as I can tell. It’s a floating-point number, so you could make a larger-size subhead with
code something like this:

				 myReport.size = 1.4
				 myReport.writeText("Manufacturer's Warning")

style	 This lets you set your text to one of two pre-determined styles, specified as strings:
"DefaultNoteText" or "NoteTitle".

				 myReport.style = "NoteTitle"
				 myReport.writeText("I am entitled!")

Table 1 Report Object Properties

Name	 Value		 Meaning
color	 color			 Text and divide color
size		 number		 Text size multiplier
style	 string			 Text style

Acumen Journal: PostScript Tech		 12

Acrobat Title

Acumen Journal: PostScript Tech		 12

Report Object Methods

Here are the methods you will most commonly use to create a report. Note that there are no methods for
specifying drawing location on the page; as I said earlier, a report is drawn from the top, down.

Creating a Report Object

Report	 This is the class’ constructor; you create a Report object with the line

		 var myReport = new Report

There are optional arguments that let you specify the page margins and paper size, but I’ll
let you research those on your own.

Drawing on the Page

writeText("text")	 Draws a string on the page.

indent(pts)	 Indents (that is, moves to the right) the text that follows by the specified amount, expressed
in points (1/72-inch).

You may omit the argument, in which case the following text will be indented the default
distance, which is 0.

outdent(pts)	 Outdents (that is, moves to the left) the text that follows by the specified amount, expressed
in points (1/72-inch).

divide(width)	 Draws a horizontal line across the page with the specified line width, expressed in points.

breakPage	 Inserts a page break.

Finalizing

open(“docName”)	 Finalizes the report, opening it in Acrobat as a pdf file with the specified name.

mail(bool,”addr”)		 Finalizes the report, emailing the document to a specified address.

Acumen Journal: PostScript Tech		 13

Acrobat Title

Acumen Journal: PostScript Tech		 13

If the Boolean is true, this method presents a dialog box to the user (Figure 2),
allowing the use of either the system’s default email client or a webmail client.
Note that this Boolean has meaning and is heeded only if the method is being
executed in “privileged” mode (which is the topic of a future article); under normal
circumstances, Acrobat always treats the Boolean as true.

Back to Our Sample
So, let’s return to our sample script and examine each line in detail. As a reminder, here’s the script:

var rep = new Report()						 // Create a Report object
var name = this.getField(“txtName”).value	 // Get the Text field’s value

rep.size = 1.4							 // Increase the point size
rep.writeText("Greetings!")				 // Draw the page title
rep.size = 1.0							 // Revert to original point size
rep.divide(2)							 // Draw a horizontal divider line
rep.writeText("\nHi, " + name + ".")		 // Draw a two-line message
rep.writeText("How ya doin’?")
rep.open("Greeting")						 // Open the report as a PDF document

Step by Step

var rep = new Report()

Here we create our Report object and assign it to the variable rep.

var name = this.getField("txtName").value

We get the value of the field txtName and assign the resulting string (containing a name) to the variable name.

Figure 2. The mail method lets you email the report using
your mail client or webmail.

Acumen Journal: PostScript Tech		 14

Acrobat Title

Acumen Journal: PostScript Tech		 14

Note that we are collapsing into a single line of JavaScript something that would be perhaps clearer if done in
two steps:

var txtField = this.getField("txtName")	 // Get a reference to the Text field
var name = txtField.value				 // Get the field's value

However, this entails creating an extra variable, txtField, that we never use again. Since the getField
method returns a Field object, we can use the method call this.getField as though it were, itself, a Field
object. Hence,

var name = this.getField("txtName").value

assigns to name the string value of the Text field txtName.

rep.size = 1.4

We set the size property of the Report object to 1.4. This is a multiplier; the text size will be set to 1.4 times
the “standard text size,” which is a curiously undefined value that looks, to my eyeballs, to be about 14 points.

rep.writeText("Greetings!")

We print some text on our report page. I intend the string “Greetings” to be my report title, which is why I am
printing it 40% larger than the body text that will follow (Figure 3).

rep.divide(2)

We print a horizontal line that is intended as a divider, in this case separating the report title from its body.

Note that the method’s argument is a line width; our divider will have a thickness of 2 points.

rep.size = 1.0

We set our linewidth back to the default text height. Remember that the number is a multiplier; we are
setting the the text height to 1.0 times the standard text height.

Figure 3. The text size of the “Greetings” title is 40%
bigger than the body text beneath it. Also, notice
the blank line before the “Hi” line, put there by the
“\n” in the writeText string.

Acumen Journal: PostScript Tech		 15

Acrobat Title

Acumen Journal: PostScript Tech		 15

rep.writeText("\nHi, " + name + ".")	
rep.writeText("How ya doin’?")

We print our two-line message. Note that these came out on separate lines on the page; each call to
writeText starts a new line of text in our report.

Note also the \n in the first line of text. This is a “metacharacter” that wll be interpreted by Acrobat as a
newline indicator; that is, it tells Acrobat to move to the beginning of the next line of text. In our case, since
the \n is at the beginning of the text, we will see a blank line above the “Hi.” (Take a look at Figure 3.)

Note finally that we assembled the first line of text by concatenating the string “Hi, “ with the text taken from
the txtName Text field, using the + sign, the JavaScript concatenation command. That is, if name has the string
value “Amstel”, then

"Hi, " + name + "."

will print as

Hi, Amstel.

Incidentally, you can also use the metacharacter \t within a string to denote a tab; the text that follows it
in the string will be indented to a predetermined (and, again, undocumented) position .

rep.open("Greeting")

Finally, we end our report, opening it in Acrobat as a pdf document with the name Greeting.

If we had wished, we could have emailed the report as a pdf document by calling the mail method
(Figure 4):

rep.mail(true,"hoozit@whatzit.com")

The true says that Acrobat should hand the mail off to your mail client. As I said earlier, you’ve no
choice in the matter, since Acrobat always mails your pdf report using your mail client unless you’re
running in “privileged” mode.

Figure 4. We could have mailed our finalized report to a
list of email addresses.

Acumen Journal: PostScript Tech		 16

Acrobat Title

Acumen Journal: PostScript Tech		 16

Surprisingly Useful

Even though it’s very primitive in its formatting capability, ther Acrobat JavaScript Report object is a very
useful mechanism to know about. It doesn’t come up often, but when it does, it is indispensable.

Acumen Journal: PostScript Tech		 17

Schedule of Classes

Schedule of Classes, August 2012– October 2012

At right are the dates of Acumen Training’s upcoming classes
in Orange County, California. Click on a class name to see the
description of that class on the Acumen Training website.

O.C. and On-Site

These classes are taught in Orange County, California and on-site at
corporate sites world-wide.

Please see the Acumen Training web site for more information,
including an up-to-date schedule.

Class Fee

Classes cost $2,000 per student, with the following exceptions:

■	 Troubleshooting PostScript $1,500
■	 Support Engineers’ PDF $1,000

There is a 10% discount for signing up three or more students.

Note that if you have four or more students that need to take a class,
it will almost certainly be cheaper to arrange an on-site class.

PDF Classes
PDF 1: File Content

and Structure Aug 20–23 Oct 15-18

PDF 2: Advanced File
Content

Support Engineers’ PDF Sept 6–7

PostScript Classes

PostScript Foundations Sept 17–21

Advanced PostScript

Variable Data PostScript

Troubleshooting
PostScript Sept 3–5

http://www.acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/Descr_SEPDF.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html

Acumen Journal: PostScript Tech		 18

Contacting John Deubert at Acumen Training
For more information

For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: www.acumentraining.com	email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes

To register for an Acumen Training class, contact John any of the following ways:

Register On-line: www.acumentraining.com/register.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

On-Site Classes

Information regarding classes on corporate sites is available at www.acumentraining.com/Onsite.html. These
courses are taught throughout the world; for additional information on classes outside the United States, go
to
www.acumentraining.com/OnsitesWorldWide.html.

Back issues

All issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Contacting John

http://www.acumentraining.com
mailto:john%40acumentraining.com?subject=
http://www.acumentraining.com/Register.html
mailto:registration%40acumentraining.com?subject=
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/OnsitesWorldWide.html
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 19

What’s New?

What’s New at Acumen Training?
The E-book is Selling Well, Hooray

Beginning JavaScript for Adobe Acrobat is out and selling well, I’m pleased
to say. Do pick up a copy if you need to learn how to extend the capabilities
of your Acrobat forms.

A description of the book, its table of contents, and a free, 2-chapter sampler
are available on the Acumen Training website; click here.

Expanded PostScript Consulting

The infrastructure for the PostScript and PDF consulting services is now in
place. If you need help with on a PostScript- or pdf-related project, I provide
a range of consulting services, from email‑based question-and-answer to
planning and implementing a complete project.

More information is here on the Acumen Training website.

New Journal Design

As you noticed if you’re a regular journal reader, I’ve been fussing around
with its layout and design. I’m trying to make it more consistent with the
layout and color scheme of the e-books and web site. I’m not a designer by trade, so my main goal has been
simply to avoid a color combination that makes readers’ teeth ache.

http://www.acumentraining.com/QEDGuides
http://www.acumentraining.com/consulting.html

	Go Next Page Bottom 12:
	Page 1: Off

	Go Next Page 7:
	Page 1: Off

	Go Next Page Bottom 13:
	Page 2: Off
	Page 91: Off

	Go Next Page:
	Page 2: Off

	Go Home:
	Page 2: Off

	Go Prev Page:
	Page 2: Off

	Go Prev Page 7:
	Go Next Page Bottom 11:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 139: Off
	Page 1410: Off
	Page 1511: Off
	Page 1612: Off

	Go Next Page 3:
	Go Home 3:
	Go Prev Page 3:
	Go Next Page 1:
	Page 4: Off
	Page 51: Off
	Page 62: Off
	Page 73: Off
	Page 84: Off

	Go Home 1:
	Page 4: Off
	Page 51: Off
	Page 62: Off
	Page 73: Off
	Page 84: Off

	Go Prev Page 1:
	Page 4: Off
	Page 51: Off
	Page 62: Off
	Page 73: Off
	Page 84: Off

	Go Next Page 2:
	Page 9: Off

	Go Home 2:
	Page 9: Off

	Go Prev Page 2:
	Page 9: Off

	Go Next Page 10:
	Page 10: Off
	Page 111: Off
	Page 122: Off
	Page 133: Off
	Page 144: Off
	Page 155: Off
	Page 166: Off

	Go Home 7:
	Page 10: Off
	Page 111: Off
	Page 122: Off
	Page 133: Off
	Page 144: Off
	Page 155: Off
	Page 166: Off

	Go Prev Page 10:
	Page 10: Off
	Page 111: Off
	Page 122: Off
	Page 133: Off
	Page 144: Off
	Page 155: Off
	Page 166: Off

	Go Next Page 6:
	Page 17: Off
	Page 181: Off
	Page 192: Off

	Go Home 6:
	Page 17: Off
	Page 181: Off
	Page 192: Off

	Go Prev Page 6:
	Page 17: Off
	Page 181: Off
	Page 192: Off

	Go Next Page Bottom 14:
	Page 17: Off

	Go Next Page Bottom 15:
	Go Next Page 9:
	Go Home 13:
	Go Prev Page 9:
	txtName: John
	btnReport:

