
Table of Contents

The Acrobat User JavaScript: Locking Form Fields and Comments With flattenPages
An interesting way of “locking” form fields and comments in a pdf file is to convert them
to graphics on the pdf page. Instead of the original form fields, you now have graphic
objects that look like the original fields, complete with information.

PostScript Tech Handling PostScript Errors, Part 2
We continue our examination of how to override PostScript’s reporting of errors. This time, we
see how to print an error message on the current page.

Class Schedule July, Aug, Sept

What’s New? International Classes
Several people have contacted me recently asking if I teach outside the United States.
Yep.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 39 © 2005 John Deubert, Acumen Training

John Deubert’s Acumen Journal, June 2005

Acrobat User

Acumen Journal: Acrobat User �

Locking Form Fields and Comments With flattenPages
A lawyer friend of mine was scanning some of his paper forms and converting them to
pdf files, adding form fields in the places where he would normally handwrite clients’
names, etc. His intent, of course, was to be able to type the information into the appro-
priate places on the forms and then send them to his clients as pdf files for signature.

A concern of his was he wanted to make sure that the information he typed in couldn’t be
changed by his clients. He could add password security to the files, but he was looking
for something more streamlined.

What he decided to do was to flatten the comments and form fields in the pdf file. In this
context, the term “flatten” has nothing to do with transparency. Rather, it refers to
 converting pdf annotations and form fields into regular drawn objects on the page.
Once this is done, comments and form fields become immutable, since they have been
transformed into lines, squares, text, and other non-interactive graphic objects.

For example, compare the two pieces of text at right. Both
were crossed out using the Acrobat Text Annotation tools.
In the top line, the original annotation is in place; you can
click on the annotation within Acrobat and the strike through,
you can double-click on the red line and see the text associated with the annotation.

The second line has been flattened; you cannot select, double-click, or otherwise
 manipulate the red line, because it is no longer an annotation; it is simply a red line.

Next Page ->

This is crossed out
This is crossed out

JavaScript

This month’s article presumes
you have some experience
in using JavaScript with
Acrobat. You’ll need to
know at least the basics
of attaching a JavaScript
to a button or other form
field, about the equivalent
of having read my book
Extending Acrobat Forms
With JavaScript.

Hint, hint.

johndeubert
Cross-Out
This is an annotation.

Acumen Journal: Acrobat User �

flattenPages

How Do We Do It? Acrobat does not provide access to the flattenPages feature it its user interface; you must
write a JavaScript, attached to a button, for example.

This can be a very simple JavaScript, consisting of a call to the Doc object’s flattenPages
method:

	 this.flattenPages(pageNum)

The flattenPages method takes an optional page number as its argument and flattens
the comments and form fields on the specified page. If you omit the page number,

	 this.flattenPages()

then the method will flatten all of the pages in the pdf document.

This method was added to the Acrobat JavaScript interface in Acrobat 5, so it will be
available on most of the Acrobat installations you are likely to encounter.

Let’s use this in a specific example.

Next Page ->

Acumen Journal: Acrobat User �

flattenPages

A Flatten Doc Button Below, left, is a simple pdf form with a single text box and a Flatten button, named txtName
and btnFlatten, respectively, as shown below center. Below right, I have added a text
annotation to the document and added a “strike-through” annotation over some of the
text, crossing out the text.

We are going to add a JavaScript to the Flatten button that calls flattenPages.

Next Page ->

Files on Web Site

As usual, the sample files
for this month’s article are
on the Acumen Training
Resources page among the
Acrobat examples. Look for
the file Flattenpages.zip.

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User �

flattenPages

Attaching a JavaScript Let’s remind ourselves how to attach a JavaScript to an Acrobat Button form field. This
description will be brief, because you will have already read how to associate JavaScripts
with buttons in my JavaScript book. (Right?)

If you want to follow along, start with the file RubADucky0.pdf, among this issue’s sample
files. This document has the comments and form fields, but no JavaScripts.

With the pdf file open, do the following:

1. Select the Select Object tool in the Advanced Editing toolbar.

 All of the form fields in the document will become outlined in the usual
rectangles-with-handles.

2. Double-click on the Flatten button.

 Acrobat will present you with the Button
Properties dialog box, at right.

3. Click on the Actions tab and, in that panel,
select Mouse Up for the trigger and Run a
JavaScript for the action.

4. Click the Add button.

 Acrobat will present you with the Edit
JavaScript dialog box (next page).

Next Page ->

Sample Files

As it says at right, the file
RubADucky0.pdf among
this article’s sample files
contains the comments
and form fields, but no
JavaScript; you may add it
yourself.

The file RubADucky1.pdf is
the same file, but with the
JavaScript already typed in.
The Flatten button works in
this one.

Acumen Journal: Acrobat User �

flattenPages

5. Type the following JavaScript into
the JavaScript Editor dialog box:

	 this.flattenPages()

 This script calls the flattenPages
method in the current document
object. Since we are not passing a
page number to the method, this
JavaScript will flatten the entire
document.

6. Click the OK button.

 Acrobat will return you to the Button
Properties dialog box, now listing the
JavaScript Mouse Up action.

7. Click the Close button in the Button
Properties dialog box and we are done.

Done! We now have a functioning flatten button. When you click on this button, Acrobat
will flatten all of the comments and form fields within the document.

So far, so good. There are a couple of improvements we can make, however.

Next Page ->

Acumen Journal: Acrobat User �

flattenPages

Hide the Button One annoyance is that the flattening process also flattens our Flatten button, converting
it to a useless—and annoying—graphic object. This is an invitation to frustration, since it
still looks like a button, but clicking on it doesn’t do anything.

So, let’s change our button’s JavaScript so that, before we
flatten the document, we hide the Flatten button.

var	f	=	this.getField(“btnFlatten”)
f.hidden	=	true

this.flattenPages()

This code does three things:

• Get a reference to the current document’s btnFlattern
field, placing this reference in variable f.

• Set the field’s hidden property to true, making the button
invisible.

• Flatten the pages, as before.

Now, when we click Flatten, the button disappears and then everything is converted to
flat graphics. (The button is still being flattened along with everything else, but since we
can’t see it anymore, we don’t care.)

Next Page ->

Acumen Journal: Acrobat User �

flattenPages

Add an Alert Finally, let’s give the user a chance to back out of the flatten operation. Since the effect of
flattening is broad and undoable, it seems only fair to warn the user and offer a way out.

Below is the final script as I would use
it. It first presents the user with an “Are
you sure?” dialog box (right). It flattens
the file only if the user does not click
the “No” key.

var	i

i	=	app.alert(“Are	you	sure	you	want	to	flatten	the	pages?”,	1,	2)

if	(i	!=	3)	 {
	 var	f	=	this.getField(“btnFlatten”)
	 f.hidden	=	true	
	 this.flattenPages()
}

Remember that the Application object’s alert method takes a string, an icon code, and a
“what buttons” code. It returns an integer indicating which button was clicked; a return
value of 3 would indicate th euser clicked the No button.

Our script flattens the document only if the return value, i, is not 3. Refer to my JavaScript
book or the Acrobat JavaScript Objects Reference (downloadable from the Acumen Training
Resources page) for more information on the App object’s alert method. Next Page ->

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User �

flattenPages

Final Notes
Appropriate Use Flattening a pdf file is a remarkably useful ability under many circumstances. It isn’t

something you would normally use in an interactive form that you are going to send to
someone else to fill out. However, it is something that is very useful in a form that you
are going to fill out and then send to someone else as a customized, finished document
(such as my friend’s boiler-plate contract).

Caveat The only caution I have to pass on is that when flattening
 comments within a document, the flattening process preserves
only the graphic associated with the comment, not the pop-up
text window.

Thus, a standard “sticky note” comment, as at top right, when
flattened becomes just the icon; the comment text is discarded.
This is fine for text edit comments, circles, arrows, etc.; it definitely
is useless for sticky notes. (You’ll notice that the text comment
in the “RubADucky” file is actually a text box annotation.)

Return to Main Menu

PostScript Tech

Acumen Journal: PostScript Tech 10

Handling Errors in PostScript, Part 2
In the last issue, we saw how to override Acrobat’s default error handling mechanism. We
redefined the handleerror procedure in errordict, allowing us to emit an error message to
stdout that included the name of the error, the offending command, and the contents of
the operand stack.

Last month, we just duplicated the functionality of Distiller’s default error handler. This
month, we shall extend our error handler so that it will do two new things:

• Print the contents of the Dictionary stack.

• Print its error message on the current page, rather than sending the message to stdout.

This article presumes you have freshly read the first part, in the April 2005 issue of the
Acumen Journal. You can get that issue from the Acumen Training web site, as usual.

You should also read the November 2003 Journal, which describes a FindName procedure
that we shall be using in this month’s project.

Next Page ->

http://www.acumentraining.com/AcumenJournal.html

Acumen Journal: PostScript Tech 11

Handling PostScript Errors, Part 2

The Story So Far… When we last left our heros, we had written a replacement for the default handleerror
procedure that resides in errordict. Here is the program we ended with last time:

errordict	begin	 	 % Put errordict on the dict stack
/handleerror	 	 	 % Define handleerror:
{	 $error	begin	 	 % Put $error on the dict stack
	 newerror	{	 	 % Is neweerror true?
	 	 (***	PostScript	Error	***)	=	 % Yes: emit error msg
	 	 (Error:)	print	errorname	=		 % Print error name
	 	 (Offending	command:)	print		 % Print offending command
	 	 /command	load	==	
	 	 (Operand	stack:)	=	 % Print a label
	 	 clear	 	 	 	 % Clear the operand stack
	 	 ostack	aload	pop	 	 % Unload ostack
	 	 count	{ (\t)	print	==	 }	repeat	% Print stack contents
	 	 flush	 	 	 	 % Flush %stdout
	 	 /newerror	false	def	 % Reset newerror
	 }	if
	 end	 	 	 	 	 % Remove $error from the dict stack
}	bind	def	 	 	 	 % End of handleerror definition

/dhandleerror	/handleerror	load	def	 	 %	accommodate	Distiller
end	 	 	 	 	 	 % Remove errordict from dict stack
%	Now	let’s	try	the	new	error	handler
1	2	/3	(O’Leary)	moveto	 	 %	moveto will	yield	a	typecheck	error	
	 	 	 	 	 	 	 	 	 	 	 	 	 Next Page ->

Files on the Web

As usual, this file is on the
Acumen Training Resources
page. Look for the file
ErrorHandler 2.zip.

The code at right is in the
file BasicErrorHandler.ps
within the zip archive.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech 1�

Handling PostScript Errors, Part 2

For the remainder of this article, code listings will present only the handleerror definition;
the other code, still necessary, will be omitted, to save space.

Displaying the
Dictionary Stack The first change we shall make to our error handler is to display the contents of the

 dictionary stack, in addition to the operand stack. This will be easy; we need only do
with the dstack array what we have already done with ostack. Here’s the revised error
handler, with the new parts in red.

/handleerror
{			$error	begin	 	 % Push $error on the stack
				newerror	{	 	 % Is newerror true? If so...
								(***	PostScript	Error	***)	=	 % ... Print a title
								(Error:)	print	errorname	=		 % Print the error name
								(Offending	command:)	print	/command	load	==	 % Print cmd
								(Operand	stack:)	=	 	 % Print the operand stack...
								clear	ostack	aload	pop		 % ...unpack the ostack array
								count	{	(\t)	print	==	}	repeat	 % & print each item
	 	 (Dictionary	stack:)	=		 % Print the dict stack in the
	 	 dstack	aload	pop	 	 	 % same way.
	 	 count	{	(\t)	print	==	}	repeat
								flush
								/newerror	false	def	 	 % Reset newerror
				}	if
				end

}	bind	def	 	 	 	 	 	 	 	 	 	 	 Next Page ->

The code at right is in the
file BasicErrorHandler2.ps
within this issue’s zip file.

Acumen Journal: PostScript Tech 1�

Handling PostScript Errors, Part 2

The only problem with this version of our program is that the double-equal operator
does a very poor job of printing the Dictionary stack. Our error message looks like this:

***	PostScript	Error	***
Error:	typecheck
Offending	command:	--moveto--
Operand	stack:	
	 (O’Leary)
	 /3
	 2
	 1

Dictionary	stack:
	 -dict-
	 -dict-
	 -dict-

While this tells us that there were three dictionaries on the Dictionary stack, it doesn’t tell
us what they are. It would be more useful if our error message told us each dictionary’s
name, if it has one.

This is where our FindName procedure comes in.

Adding FindName The November 2003 Journal presented the definition of a FindName procedure:

	 /FindName		{	 % stack: PSObject => /name true or false
	 	

	 }	bind	def	 	 	 	 	 	 	 	 	 	 Next Page ->

Acumen Journal: PostScript Tech 1�

Handling PostScript Errors, Part 2

This procedure takes a PostScript object as its argument and searches all dictionaries on
the Dictionary stack for a key-value pair whose value is the argument object. It returns
either a boolean false, if no such key-value pair exists, or the name associated with the
object and a boolean true, indicating a match was found.

I am not going to step through the definition of findName; if you want to see its definition,
click here.

We shall now use FindName to improve our error handler. Now, to print the Dictionary
stack, we do the following; again, the new code is in red:

	 (\nDictionary	stack:)	=
	 dstack	aload	pop	 	 	 	 % Unload the dstack array
	 count	{	 	 	 	 	 	 % For each item now on the stack
	 	 (\t)	print	 	 	 	 % Print a tab
	 	 FindName		 	 	 	 % Look for the name of the object.
	 	 {	=	}	 	 	 	 	 % Found: print the object’s name
	 	 {	(<<Unnamed	dict>>)	=	}	 % Not found: print “unnamed dict”
	 	 ifelse
	 }	repeat

We have changed the printing of the dstack array so that, for each item, we execute
FindName. If that procedure returns a true on the stack (with the dictionary’s name
beneath it), we simply call the equal operator, printing the name. If FindName returned
false, indicating the dictionary being tested had no name associated with it, then we
simply emit the phrase “<<Unnamed dict>>”.

Next Page ->

The code at right is in the
file BasicErrorHandler3.ps
within this issue’s zip file.

Acumen Journal: PostScript Tech 1�

Handling PostScript Errors, Part 2

Now, our error message reports the dictionary stack contents like this:

Dictionary	stack:
	 userdict
	 globaldict
	 systemdict

You could extend this so that you print the names of objects on the operand stack, as
well, but I shall leave that as an Exercise For the Student.

Printing the Errors The final version of our error handler will
print its error message on the current page.
For simplicity, we shall revert to the earlier
error message, consisting of the name of
the error, the offending command, and the
contents of the operand stack. A typical
error page would look like the illustration
at right.

Note that I’m using GhostScript, rather
than Distiller, to view this file. Distiller does
not seem to like printing error messages to
the current page. (This isn’t unreasonable;
it’s hard to imagine a “real world” circum-
stance in which one would want a pdf file
with an error message on the page.) Next Page ->

Acumen Journal: PostScript Tech 1�

Handling PostScript Errors, Part 2

Approaching the Task The new handleerror definition is very similar to that presented in the file BasicErrHandler.ps,
with which we ended in the previous Journal. There are two broad changes between
that earlier version and our present definition.

Reset Grapics State We can know nothing about the state the PostScript machine will have at the time the
error takes place. Therefore, the first thing our error handler will have to do is set the
graphics state to its initial condition. We can do this with a call to initgraphics.

Replace “=” with “show” In our earlier error handlers, we used double-equal to send the pieces of our error message
to stdout. In our new version, we’ll convert each object to a string and print the string
on the current page with show. Each time, we’ll then move the current point to the
beginning of the next line.

For convenience and readability, we’ll also define some variables and a couple of procedures.

Here’s the code listing:

The Code /lm	72	def	 	 	 % Left margin for our error message
/str	100	string	def	 % A scratch string for use in string conversions
/lnHt	12	def	 	 	 % The distance between lines of test on the page

/nl	 	 	 	 	 % Move currentpoint to the next line
{	lm	currentpoint	exch	pop	lnHt	sub	moveto	}	bind	def

Next Page ->

The code at right is in the
file BasicErrorHandler4.ps
within this issue’s zip file.

Acumen Journal: PostScript Tech 1�

Handling PostScript Errors, Part 2

/showObject						% psObj => --- Convert object to string & print it
{	str	cvs	show	}	bind	def

errordict	begin	 % Put errordict on dictionary stack
/handleerror	 	 % Begin our handleerror definition
{			$error	begin	 % Put $error on dict stack
				newerror	{	 % If newerror is true...
								initgraphics	 % Initialize graphics state
								/Helvetica	10	selectfont	 % Set current font
								lm	720	moveto		 % Move to initial position on the page
								(***	PostScript	Error	***)	show	nl	 % Print label
								(Error:)	show	errorname	showObject	nl	 % Print error
								(Offending	command:)	show
								/command	load	showObject	nl		 % Print offending command
								(Operand	stack:)	show	nl	 	 % Print operand stack
								clear
								ostack	aload	pop
								count	{	 	 	 	 % For each object on the stack:
												()	show	showObject	nl	 % Print obj. on the page
								}	repeat
								showpage	 	 	 	 % Print the error page
								/newerror	false	def	 % Set newerror to false
				}	if
				end			 	 	 	 	 % Remove $error from dict stack
}	bind	def		 	 	 	 	 % End of our handleerror definition
end			 	 	 	 	 	 % Remove errordict from dict stack

1	2	/3	(O’Leary)	moveto	 	 	 	 	 	 	 	 Next Page ->

Acumen Journal: PostScript Tech 1�

Handling PostScript Errors, Part 2

Let’s look at the new parts of this error handler in detail. (You may want to review the
code step-through in the April 2005 Journal before reading this, since I’m not going to
look in detail at code identical to our earlier programs’.

Step by Step:
Variables & Procedures /lm 72 def

/str 100 string def
/lnHt 12 def

We start by defining three variables.

• lm will be the left margin, the starting point of each line in our error message.

• str is a scratch string we’ll use when we convert objects to strings (using cvs) so that
we can print them with show.

• lnHt (“line height”) is the distance between successive lines of text in our error message.
Going from one line of text to the next, the current point moves down by lnHt.

/nl
{ lm currentpoint exch pop lnHt sub moveto } bind def

The nl procedure moves the current point to the beginning of the next line; specifically,
it moves the current point down by lnHt and back to the left margin, lm. You have seen
this procedure before if you have taken any of my PostScript classes, but briefly, here’s
what the procedure does:

Next Page ->

Acumen Journal: PostScript Tech 1�

Handling PostScript Errors, Part 2

 lm
Push our left margin onto the operand stack; this will be our new x coordinate.

 currentpoint
Execute the currentpoint operator, which pushes the current x and then the current y
onto the operand stack. Our operand stack now looks like this:

	 72	x	y

 We want to decrement y by lnHt and discard x altogether, replacing it with the 72.

 exch pop
We discard the current x value...

 lnHt sub
...and subtract lnHt from y. This leaves on the operand stack the x and y values of the
beginning of the next line.

 moveto
We move to that position. The current point is now at the start of the next line.

/showObject % psObj => ---
{ str cvs show } bind def

The showObject procedure takes a PostScript object from the operand stack, converts
that object to a string representation and then prints that string on the current page
with show.

Next Page ->

Acumen Journal: PostScript Tech �0

Handling PostScript Errors, Part 2

Changes to handleerror Our handleerror procedure is very like our earlier versions. There are only a few differences:

newerror {
 initgraphics

The first thing we do after establishing that newerror is true is to call initgraphics. This
resets everything in the graphics state back to their original values. This will include the
coordinate system, color, and clipping path; this will not erase the current page, so our
error page will still have whatever marks were on it when the error took place.

/Helvetica 10 selectfont
lm 720 moveto

We set the current font to a 10 point Helvetica and then move the current point to an
initial position on the page.

(*** PostScript Error ***) show nl

Any constant string we want to print will now be printed with a show, rather than double-
equal. At the end of each line within our error message, we shall call our nl procedure.

ostack aload pop
count {
 () show showObject nl
} repeat

We shall precede each object on the operand stack with a series of printed spaces; this
allows us to indent the stack contents in the absence of a tab function. We then print
the stack item with our showObject procedure and do a newline. Next Page ->

Acumen Journal: PostScript Tech �1

Handling PostScript Errors, Part 2

showpage

Finally, having printed the contents of the operand stack, we do a showpage, ejecting
the current page with its error message.

That’s it We now have a functioning error handler that will print an error message to the current
page. Since we didn’t erase the page before printing our message, it will have on it all
of the marks drawn before the error took place, which is very useful for diagnosing the
source of the error.

For More Information If you are curious how to add more functions to the error handler, you might look at the
PostScript code for the Acumen Errorhandler on the Acumen Training Resources page.
This is a fully-functional error handler that prints the contents of the operand, dictionary,
and execution stacks and the ErrorInfo array, in addition to the things printed by this issue’s
basic error handler. It also demonstrates how to carry out different reporting procedures
based on the type of data on the stack and a variety of other useful techniques.

Be aware that the Acumen Errorhandler is not intended primarily as a teaching tool and,
therefore, the documentation and commenting are fairly minimal.

Return to Main Menu

http://www.acumentraining.com/resources.html

Schedule of Classes, July – September 2005
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class on
the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

PDF File Content
and Structure

Aug 8–11

PostScript
Foundations July 18–22 Sept 19-23

Variable Data
PostScript

Advanced
PostScript

PostScript for
Support Engineers

Jaws Development On-site only

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
 organization sign up for the same class.

 Registration ->

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

International
Classes A number of people have contacted me in recent weeks asking if I teach classes outside

of the United States. The answer is, of course, “Yes.” In fact, in the past twelve months,
I have taught more classes outside the U.S. than inside in cities including Munich,
Amsterdam, Antwerp, Guadalajara, Cambridge, Ottowa, Scarborough, and Delhi.

My PostScript and PDF on-site classes have the same pricing stucture regardless of
 location. For details, go to the Acumen Training On-site page; there is a link on that page
for additional information about classes outside the U.S.

 Return to First Page

What’s New?

Acumen Journal: What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
 particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you
remember fondly your last root canal?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal: Acrobat User ��

A Simple Form for Flattening

Acumen Journal

Button Properties

Acumen Journal

Button Properties

Acumen Journal: PostScript Tech �0

I’m not going to step through the definition of this procedure here; the comments
should help you remember how this works. See the November 2003 Journal article for
full details.

/FindName									%	obj	=>	/name	true	-or-	false
{
				/dictCount	countdictstack	def	 % How many items on the dict stk?
	 /dArray	dictCount	array	def		 % Make an array that big
	 dArray	dictstack	pop	 	 % Load array with dict stk contents
	 {	 	 	 	 	 	 % Begin “stopped” proc
						 dictCount	1	sub	-1	0	 % for loop, counting backwards
	 	 {	 dArray	exch	get	 % Get dictionary from dArray
										 {	 2	index	eq	 % forall: look for value match
	 	 	 	 {	stop	}{	pop	}	ifelse	% Found: execute stop
	 	 	 }	forall
	 	 }	for
	 }	stopped		 	 	 	 % stack: val false -or- val /key true
	 dup
	 {	3	-1	roll}	{	exch	}	ifelse	 % Bring orig. object to top
	 pop	 	 	 	 	 	 	 % Toss the original target value
}	bind	def

Click the “minus” sign at right to return to the article.

FindName Definition

	btnHome:
	btnPrevPage:
	btnNextPg:

