
Table of Contents

The Acrobat User Acrobat 6 Form Tools
Acrobat 6 has overhauled the user interface associated with
making form fields. This month we look at what’s new in
making forms in the new Acrobat .

PostScript Tech Recursive Programming in PostScript
Recursive algorithms can be addictive, once you get the
hang of it. Many of these algorithms are graphical, making
PostScript an excellent language for implementing them.

Class Schedule Jun–Jul–Aug

What’s New? Nothing too much, really
Still, you can always go to the bookstore and browse for the new JavaScript book.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 26 © 2003 John Deubert, Acumen Training

John Deubert’s Acumen Journal, June 2003

Acumen
Training

Acrobat 6 Form Tools
Acrobat 6 has been released and,
although in many ways it is the
same Acrobat software we have
come to know and/or love, it sure
looks different. (Among other
things, there is clearly a feeling
that you cannot have too many
toolbars!)

Acrobat 6 also has added a lot of
new capabilities, some of which are
going to be quite useful. This
month, however, I’d like to discuss
something that has changed almost completely in its user interface, though only a little
in its capabilities: the mechanism by which you add form fields to an Acrobat file.

The capabilities of Acrobat’s form mechanism are substantially the same in Acrobat 6
as in Acrobat 5, but the means by which you make form fields, specify their properties,
and otherwise turn your Acrobat file into an interactive form has changed its look com-
pletely. Specifically, it’s better.

Let’s see what it looks like now.

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

The Forms Toolbar Acrobat 6 replaces the earlier Form Tool with a
new Forms Toolbar containing a button for each
of the seven types of form fields
supported by Acrobat. This tool-
bar may not be initially visible;
to get to it, you need to select:
Tools>Advanced Editing>
Forms>Show Forms Toolbar

Making a Form Field To place a new form field on an
Acrobat page in Acrobat 6, you
do the following:

1. Make the Forms toolbar visible, if necessary.

2. Click on the appropriate button in the tool bar.

3. Drag out a rectangle on the Acrobat page.

You will now be faced with the new incarnation
of the Field Properties dialog box. This is much
improved over the Acrobat 5 version.
(Especially in Mac OS X, in which the Field
Properties dialog box was particularly ugly.)

Next Page ->

Acumen Journal: Acrobat User 3

Acrobat 6 Form Tools

Text Field
Properties Let’s look at the contents of the new Field Properties dialog box. We shall start

by examining the each of the properties panels for Text fields (since they have the
richest set of properties). This is a brief overview; we shall discuss in detail only those
panels that have a feature new to Acrobat 6.

General Panel All of the General properties panel’s
controls were available in Acrobat 5.
You specify the name of your form field
and a variety of other properties. The
only things new here are UI features:

• The old “Short Description” field is
now more-usefully labeled “Tooltip.”

• The visibility pop-up menu has been
reworded again. I like the new
wording better than Acrobat 5’s.

Next Page ->

Acumen Journal: Acrobat User 4

Acrobat 6 Form Tools

Appearance Panel The Appearance properties haven’t
changed, aside from appearance.

It does look nice, though.

Options Panel The new Options panel for Text fields
does have a couple of new options:

• Allow Rich Text Formatting allows
the Text field to contain styled text.

• Comb of xx characters spreads the
field’s contents (up to a specified
number of characters) across the
width of the text field. Each character
is separated by vertical border, as in
the illustration at left. (This is for
forms that need to have each
character in a separate box.)

Next Page ->

Acumen Journal: Acrobat User 5

Acrobat 6 Form Tools

Actions Panel The Actions panel, itself, hasn’t changed
except in appearance; however, the
Select Action pop-up menu gives us
some significantly useful new actions
that a form field can carry out.

What’s new here are:

• Go to a page in this/another document
These two actions send the user to another location within this or another PDF file.
In Acrobat 5, links and bookmarks had a “Go to” action, but form fields did not;
form fields needed to use a JavaScript for this activity.

Next Page ->

Acumen Journal: Acrobat User 6

Acrobat 6 Form Tools

• Go to a snapshot view
If you use the Acrobat Snapshot tool to grab a picture of some
part of a page and then later make a form field, this action will
convert the most recent snapshot to a destination for a Go To
action. The net effect is to present the user with a view that is
zoomed in on the earlier snapshot’s target area.

• Set layer visibility
Applications that support the notion of “layers” within a document can now have
those layers survive into the PDF file created from that document. This action lets
you change the visibility of those layers.

Note that it is the responsibility of the application that creates the PDF file to pre-
serve the layers. I would be astonished if the next versions of Adobe’s products
(and perhaps the upcoming QuarkXpress 6?) didn’t support this.

• Play Media (Acrobat 6 Compatible)
This is nearly the same as the Acrobat 5 Movie action. The important differences
that Acrobat 6 compatible movies support a much broader range of media types
(avi, flash animations, etc.) and the movie can be embedded in the PDF file, rather
than residing as an external file.

Next Page ->

Acumen Journal: Acrobat User 7

Acrobat 6 Form Tools

Format Panel The Format panel adds one new feature
to the Text field’s predefined formats:
Arbitrary Mask. This allows you to
specify a character sequence pattern
using a very simple formatting “lan-
guage.” (“A” matches any alphabetic
character, “9” matches any numeric
character, etc.)

Thus, the mask “9AAA999” matches
California’s automobile license plate
numbers, such as “4XYZ123.”

We’ll describe this in an upcoming issue
of the Journal, since this is a common
need in many forms that could be done
in Acrobat 5 only using much-more-
difficult regular expressions.

Next Page ->

Acumen Journal: Acrobat User 8

Acrobat 6 Form Tools

Validate Panel The Validate panel is pretty much
unchanged from Acrobat 5, except for
looks.

Calculate Panel A significant addition to the Calculate
panel is Simplified field notation. This
allows you to calculate a Text field’s
contents using a simplified syntax that
is much easier than JavaScript. The
new calculation format has some of
the flavor of a spreadsheet macro.

Again, we’ll see this in much more
detail in a future Journal article.

Next Page ->

Acumen Journal: Acrobat User 9

Acrobat 6 Form Tools

Other Field Types The other form field types have some additional properties added to them, as well.
Let’s review what’s new.

Button Fields Button fields have no new features that I have noticed so far. I especially
appreciate the improved user interface here, however.

Combo & List Boxes Combo Box and List fields
have a new option:

Commit selected value immediately
When the user clicks on an item in the
List or selects an item in the Combo
Box, that item immediately becomes
the field’s value. (Normally—and always
in Acrobat 5—the user’s selection does-
n’t become the field’s value until the
user tabs out of the field or selects
another field.)

This option will make it easier to imple-
ment some interactive form features,
such as “live” updating of other fields
based on the user’s selection in the list.

Next Page ->

Acumen Journal: Acrobat User 10

Acrobat 6 Form Tools

Radio Buttons Radio buttons have a new property,
Buttons with same name and value are

selected in unison. The name describes it
pretty well: click on a radio button and all
radio buttons with that name and export
value become selected.

Signature Fields There is nothing new among the prop-
erties for Signature fields that I can

see. Looks nicer, of course.

Other New
Features In addition to new form field properties, there are a number of new form-related features

in the Acrobat 6 application. The ones I’ve gotten to know and like the best so far are:

Expanded JavaScript
Support The Acrobat 6 JavaScript interface defines a number of new objects and adds properties

and methods to the previously-existing objects. Some of these are quite interesting,
but I’ll defer this whole topic until next month, since it’s quite a lot to chew on.

Next Page ->

Acumen Journal: Acrobat User 11

Acrobat 6 Form Tools

Creating Tables With
Create Multiple Copies If you right-click (or control-click, if you

have a one-button mouse) on a form
field, you can select Create Multiple
Copies from the resulting contextual
menu. This feature replaces the old,
hidden create-a-table feature in
Acrobat 5.

When you select this feature, Acrobat
presents you with the Create Multiple
Copies dialog box, that tells Acrobat
to create an array of form fields based
on the fields you selected. Acrobat automatically
names all the fields (your originals, as well as the
new ones) in accordance with the Adobe
Hierarchical Naming Convention. (The fields
txtAmount and txtDouble were renamed as below.)

This is an extremely useful feature, much
improved over the Acrobat 5 equivalent.

Next Page ->

Acumen Journal: Acrobat User 12

Acrobat 6 Form Tools

JavaScript Debugger Acrobat 6 now supplies a JavaScript
debugger that is automatically invoked
whenever a JavaScript error takes
place. Again, I’ll talk about this in
more detail in a not-too-distant
Journal article.

But, Wait!
There’s More Acrobat 6 is quite a major overhaul of

Adobe’s Acrobat flagship. I’m very
impressed.

It’s too early for form designers with a
general audience to be designing their documents for Acrobat 6. But people
designing forms in a controlled environment should seriously consider switching
the users to Acrobat 6. It offers much that is very worthwhile.

We shall be discussing a variety of the new features—the JavaScript debugger, the
built-in preflighting, the prepress tools—over the next several issues of the Journal.

Return to Menu

Acumen Journal: Acrobat User 13

Acrobat 6 Form Tools

Recursive Programming in PostScript
I have always had a fondness for recursive programs. They are both aesthetically and
intellectually satisfying, somehow. PostScript actually lends itself quite well to this
technique and this month’s article will discuss a few of the things you need to know to
do this successfully.

The most appealing use for recursive
programming is the production of fractal
images; I rather like producing natural-seeming
shapes (mountains, trees, etc.) using fractals,
so this month’s sample programs will look at
how to produce fractal trees, such as the one
at right.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

An Introduction
to Recursion We should start with a simple description of what recursion is, for those who haven’t

stumbled upon it before.

“Recursion” is the term given to a procedure calling itself. The classic simple case is a
procedure that calculates the factorial of an integer. You may remember from high
school algebra that n factorial—written “n!”—is the multiplicative product of n and all
the positive integers less than n. That is,

n! = n × (n-1) × (n-2) × ... × 2 × 1

A recursive algorithm for calculating n! is:

If (n > 1), then n! = n × (n-1)!

If (n = 1), then n! = 1

In PostScript... We can define a PostScript procedure named Factorial as follows:

/Factorial % n => n!

{ dup 1 ne % Is n ≠ 1?

{ dup 1 sub Factorial mul } % Yes: return n * ((n-1) Factorial)

if % (Otherwise just leave 1 on the stack)

} bind def

6 Factorial ==

The above bit of code will write the value of 6! (720, by the way) to the output stream.
Next Page ->

Acumen Journal: PostScript Tech 15

Recursive Programming in PostScript

The important significant characteristic of our Factorial definition is that it calls itself in
the inner procedure body we hand to if. This is what makes it recursive.

Limits to Recursion A PostScript procedure cannot nest calls to itself indefinitely deep; eventually, you will
hit one of several limitations.

The Operand Stack Our Factorial procedure leaves its original integer argument on the stack when it makes
the recursive call to itself. As we proceed to deeper levels of recursion, Factorial will
pile more and more numbers on the operand stack. This places a limit on the depth of
the recursion, that is, the number of times the recursive procedure may call itself.

In this case, the maximum integer we may hand to Factorial is the maximum number
of items that may be piled up on the operand stack without causing a stackoverflow
error. In a Level 1 interpreter, this was typically 500; in Levels 2 and 3, the number is
indefinite, since those versions of PostScript can grow the operand stack as needed.

Execution Stack When we call a PostScript procedure, that procedure is pushed onto the Execution
stack; the interpreter then steps through it in course of its normal execution loop. It
follows that every time a procedure recursively calls itself, it pushes yet another
instance of itself on the Execution stack.

Eventually, you will fill the Execution stack with all these repeated instances of the
recursive procedure and you will get an execstackoverflow error. The depth at which
this happens is hard to predict since, again, in modern PostScript, the Execution stack
can grow to accommodate overflow conditions.

Next Page ->

Acumen Journal: PostScript Tech 16

Recursive Programming in PostScript

By the way, many PostScript implementations remove a procedure body from the
Execution stack before executing the last item in that procedure. This means that if a
procedure recursively calls itself as the last thing it does, you will get no execstack-
overflow. Thus, the following recursive procedure will never provoke such an error:

/A_Proc { ... Some PS code or other ... A_Proc } bind def

Local Variables and the
Dictionary Stack It often happens in recursive programming that you need variables that are local to the

current recursion “level.” PostScript has no notion of passing arguments by value nor of
local variables in the usual sense. To isolate the variables used by each recursive call,
you need to have your procedure start by placing its own dictionary on the dictionary
stack as a repository for its variables:

/myRecursiveProc % x y => ---

{

20 dict begin % Place temp dictionary on dict stack

/x exch def % Define variables

/y exch def

/x2+y2 x dup mul y dup mul add def

... % Do the proc stuff

...

x 2 div y 2 div myRecursiveProc % Here’s the recursive call

end % Remove the temp dictionary from the dict stack

} bind def

Next Page ->

Acumen Journal: PostScript Tech 17

Recursive Programming in PostScript

The variables x and y in each call to myRecursiveProc are separate from those in all the
other calls to the procedure, because they occupy a separate dictionary. The procedure
removes this dictionary from the dict stack with an end before returning, so x and y
return to their former values when execution resumes in the next level up.

This places another limitation on recursion depth: you can only place so many diction-
aries on the dictionary stack before getting a dictstackoverflow error. As with the other
stacks, the exact depth at which this happens is ill-defined, since the dict stack can
also expand, within limits, when needed. (In Level 1, a typical limit would be 18.)

gsave & grestore
save & restore You may also want to do a gsave at the beginning of each recursive call and a grestore

upon returning. Alternatively, if your procedure uses VM in the course of its execution,
you may need to do a save at the start and restore at the end.

Both of these impose a limit on recursion depth. The gsave operator pushes a copy of
the graphics state onto the Graphics State stack; eventually this will fill up. (In Adobe’s
implementation, a typical default depth for the Graphics State stack is 32; it can expand,
of course.)

Similarly, there can be only so many outstanding saves. In Adobe’s implementation of
PostScript, this has a limit of 16. In most cases, this will be the most severe limit upon
recursion depth, so you should avoid save and restore, if you can.

(Also, save and restore are relatively slow operators. Usually this is imperceptible, but
in recursive programming, this could be significant.)

Next Page ->

Acumen Journal: PostScript Tech 18

Recursive Programming in PostScript

A Fractal Tree:
First Pass Now let’s make a fractal tree. We’re going to do

this in three stages. Our first pass will be a
basic tree, producing the output at right.

This tree is built up out of a relatively simple,
recursive algorithm, implemented by a procedure
named Branch, as follows:

1. Draw a branch as a vertical line up the
y axis, starting at the origin.

2. Move the origin to the far end of the line.

3. Rotate 45° counterclockwise, scale the coordinate
system by .75, and execute Branch (that’s our
first recursive call).

4. Undo the earlier coordinate transforms, rotate
–45°, scale by .75, and execute Branch again
(our second recursive call).

The above steps ignore such details as checking to see if we’re at our maximum depth.
We’ll see all that when we look at the PostScript code.

Next Page ->

Acumen Journal: PostScript Tech 19

Recursive Programming in PostScript

All the files in this article
are on the Acumen
Training Resources page.
Look for the file
FractalTrees.zip.

① ② ③

http://www.acumentraining.com/resources.html

The PostScript Code /branchLength 100 def % Dimensions of a branch

/branchWidth 5 def

/maxDepth 10 def % Exit at this recursive depth

/depth 0 def % Our current depth

/descendSizeFactor .75 def % Scale factor upon descent

/angle 45 def % Rotate for recursion 1

/-angle angle neg def % Rotate for recursion 2

Define Branch Procedure /Branch

{ /depth depth 1 add store % Increase the current depth

0 0 moveto % Draw a branch

0 branchLength lineto

currentpoint translate % Move origin to far end of branch

stroke

depth maxDepth lt % Are we not at our maximum depth?

{ gsave % Save the graphics state

descendSizeFactor dup scale % Scale

gsave % Save the graphics state again

angle rotate Branch % Rotate counterclockwise; call Branch

grestore % Undo our rotate

-angle rotate Branch % Rotate clockwise; call Branch

grestore % Undo rotation & scale

} if

/depth depth 1 sub store % Decrement the current depth

} bind def

Next Page ->

Acumen Journal: PostScript Tech 20

Recursive Programming in PostScript

Execute Branch 300 200 translate % Move the origin to the base of the tree

branchWidth setlinewidth % Initialize the line width

Branch % Execute Branch
showpage

Step-by-Step /branchLength 100 def
/branchWidth 5 def
/maxDepth 10 def
/depth 0 def
/descendSizeFactor .75 def
/angle 45 def
/-angle angle neg def

We start by defining a series of variables that we shall use in our Branch procedure.
The meaning of each of these should be fairly clear from their names. The only slightly
puzzling thing here might be the name of the final constant in this block. “–Angle”
looks like a “negative” operator applied to the Angle constant; it’s actually a name.
Remember that a minus sign is a perfectly acceptable character in a PostScript name.

/Branch
{ /depth depth 1 add store

Our Branch procedure starts by incrementing the depth variable.

Note that I’m using store, here, instead of the usual def. The store operator takes a
key-value pair from the Operand stack and places it into the first dictionary it finds on
the Dictionary stack that already contains that key. (The def operator, remember,

Next Page ->

Acumen Journal: PostScript Tech 21

Recursive Programming in PostScript

always places its key-value pair into the topmost dictionary on the Dict stack.) Since
our original depth was defined into userdict, our call to store will always place the
incremented depth into userdict, regardless of the current state of the Dictionary stack.

In our particular case, we never change the Dictionary stack, so def would have put our
new depth into userdict anyway. However, if you were putting a new dictionary onto
the Dictionary stack every time you descended a level of recursion, you might have
wanted to ensure that each recursive call was incrementing (and, later, decrementing)
the same instance of depth.

0 0 moveto % Draw a branch
0 branchLength lineto
currentpoint translate % Move origin to far end of branch
branchWidth setlinewidth
stroke

Now we draw the current branch as a vertical line at the origin. Note that we move the
origin to the far end of the line segment before we stroke the segment. This will
become the starting point for the next level of recursion.

depth maxDepth lt

We check to see if we are at our maximum recursion depth; if not, we shall continue
on to the next level.

Next Page ->

Acumen Journal: PostScript Tech 22

Recursive Programming in PostScript

{ gsave
descendSizeFactor dup scale

Assuming that our call to lt returned a true, we do a gsave and then scale our coordinate
system by descendSizeFactor, which has a value of .75. (Note the dup; remember that
scale wants two numbers as arguments: an x and a y scale.)

gsave
angle rotate Branch

grestore

Now, we make our first recursive call. We save the graphics state (with another gsave)
and then rotate the coordinate system angle degrees about the origin (which is located
at the end of the current branch). We then call Branch.

This call to Branch will run around and do everything we are currently describing,
drawing the next series of thinner branches (each of which will, in turn, call Branch to
draw the next still thinner series, and so forth).

When Branch returns, we call grestore, undoing the rotate and whatever other collection
of changes Branch made to the coordinate system.

-angle rotate Branch

We rotate clockwise and then call Branch again, drawing the right-hand branch (and its
descendents) of our tree.

Next Page ->

Acumen Journal: PostScript Tech 23

Recursive Programming in PostScript

grestore
} if

Finally, we use grestore to undo the changes we made to the coordinate system in
creating the descendant branches. (This makes the y axis once again parallel to the
trunk we drew in this instance of Branch.)

This ends the procedure that if executes while we are below our maximum depth.

/depth depth 1 sub store
} bind def

Branch ends by decrementing the depth variable. When Branch returns, execution
resumes in the instance of Branch one level of recursion higher. Eventually, execution
will bubble back to Level 0 and execution will resume with the input stream.

Keep in mind this has all been procedure definition; we haven’t yet executed Branch.

300 200 translate
branchWidth setlinewidth
Branch

Finally, we move the origin to a starting place on the page, set our linewidth, and
execute Branch.

Dissatisfaction So far, so good. We have a recursive procedure that draws a treelike structure. Still, no
one would mistake this for a real tree; it has more the flavor of a diagram than of a
drawing.

Next Page ->

Acumen Journal: PostScript Tech 24

Recursive Programming in PostScript

One significant problem is that everything in the “tree” is too
regular. The angles are exactly the same, the lengths from
branch to twig vary by exactly the same proportion. In real life,
nothing is so constant.

So let’s add some variation and see if we get a more lifelike
result.

A Fractal Tree:
Second Pass We can make our tree look a little more realistic

by adding add some random variations to the
angles and lengths of each generation’s of branch.
To do this, we shall use the PostScript rand operator,
which returns an unsigned integer that ranges
from 0 to 231-1.

Here’s the new code:

Next Page ->

Acumen Journal: PostScript Tech 25

Recursive Programming in PostScript

The Code /branchLength 100 def

/branchWidth 5 def

/maxDepth 10 def

/depth 0 def

/descendSizeFactor .75 def

/angle 45 def

/-angle angle neg def

Some new constants /dLength 25 def % Maximum deviation for branch length

/dWidth 1.25 def % Maximum deviation for branch width

/dAngle 12 def % Maximum deviation for branch angle

/maxInt 2147483647 def % Maximum integer returned by rand

A new procedure /randomFloat % --- => n % Returns random number on the range 0...1

{ rand //maxInt div } bind def % (See Feb. 2002 Journal about double-slash)

% Returns a value on the range (baseVal–dVal)...(baseVal+dVal)

/ApplyVariation % baseVal dVal => newVal

{ dup 2 mul randomFloat mul sub add } bind def

Next Page ->

Acumen Journal: PostScript Tech 26

Recursive Programming in PostScript

% This version of Branch is identical to the previous, except we apply

% a variation (using ApplyVariation) to all lengths, widths, and angles

/Branch

{ /depth depth 1 add store

0 0 moveto

0 branchLength dLength ApplyVariation lineto

currentpoint translate

branchWidth dWidth ApplyVariation setlinewidth

stroke

depth maxDepth lt

{ gsave

descendSizeFactor dup scale

gsave

angle dAngle ApplyVariation rotate Branch

grestore

-angle dAngle ApplyVariation rotate Branch

grestore

} if

/depth depth 1 sub store

} bind def

300 200 translate

0 dAngle ApplyVariation rotate % Apply a variation to the main trunk

Branch

showpage

Next Page ->

Acumen Journal: PostScript Tech 27

Recursive Programming in PostScript

Step-by-Step What’s different in this new PostScript program is:

New constants /dLength 25 def % Maximum deviation for branch length
/dWidth 1.25 def % Maximum deviation for branch width
/dAngle 12 def % Maximum deviation for branch angle
/maxInt 2147483647 def % Maximum integer returned by rand

We define some constants that are used in varying the lengths, widths, and angles of
the tree trunks and branches.

New Procedures /randomFloat % --- => n % Returns random number on the range 0...1
{ rand //maxInt div } bind def

The randomFloat procedure returns a random floating point number on the range 0…1.
It simply divides the integer returned by rand by maxInt.

/ApplyVariation % baseVal dVal => newVal
{ dup 2 mul randomFloat mul sub add } bind def

Apply variation takes two numbers, a “base value” and a maximum deviation value (dVal).
It returns a floating point value equal to the base value plus a random deviation not
exceeding ±dVal.

The math carried out by ApplyVariation is:

result = baseVal + (dVal - (2 * dVal * randomFloat))

Next Page ->

Acumen Journal: PostScript Tech 28

Recursive Programming in PostScript

New Branch procedure /Branch
{ /depth depth 1 add store

0 0 moveto
0 branchLength dLength ApplyVariation lineto
currentpoint translate
branchWidth dWidth ApplyVariation setlinewidth
stroke
depth maxDepth lt
{ gsave

descendSizeFactor dup scale
gsave

angle dAngle ApplyVariation rotate Branch
grestore
-angle dAngle ApplyVariation rotate Branch

grestore
} if
/depth depth 1 sub store

} bind def

Our new definition of Branch differs from the previous definition only in that it applies
a random variation (using the ApplyVariation procedure) to all of the branch lengths,
widths, and angles.

Next Page ->

Acumen Journal: PostScript Tech 29

Recursive Programming in PostScript

300 200 translate
0 dAngle ApplyVariation rotate
Branch

Having finished defining Branch, we need to use it
to draw a tree: move the origin to some useful
starting point; rotate by 0±dAngle° (to add an ini-
tial variation to the first trunk’s direction); execute
Branch.

The results are as we see at right.

Additional Trees It is easy to spend endless hours adding this and that to one’s fractal trees. The file
Fractal Trees.zip, on the Acumen Training Resources page, has two files in it in addition
to the two trees we looked at in detail in this article. These additions try to increase
the realism of our trees.

Fractal Tree 2.ps This file’s definition of Branch checks to see if it is a
the maximum depth and, if so, draws a little leaf
whose color is a varying shade of green. I increased
the maximum depth by one, so that we have as many
branches this time as last, but each final twig has a
leaf at its end.

Next Page ->

Acumen Journal: PostScript Tech 30

Recursive Programming in PostScript

Fractal Tree 3.ps We get some more-interesting, more natural shapes
by replacing the line segments with bezier curves,
applying variations to the positions of all the end
points and control points.

Fractal Tree 4.ps Now we go completely crazy. I’ve added a third
branch at each level with an angle of 0° (plus
or minus the usual variation). I’m also scaling
in the y direction by a factor of .7±.3, in an
attempt to simulate branches pointing toward
or away from the viewer (not too successfully,
I admit).

This file yields a surprisingly large (7 MB) PDF
file, caused by the jump to three branches per
level of recursion; we go from 211–1 branches
to 311–1, i.e., from 2,047 to 177,146. (That’s
why the illustration on this page is a tif, rather
than an EPS file.)

Next Page ->

Acumen Journal: PostScript Tech 31

Recursive Programming in PostScript

A Call for Readers’ Trees If you find this fun and interesting and feel moved to extend what we’re doing here,
and if you come up with anything especially interesting, please email it to me. I’ll
assemble a gallery of readers’ trees and post it on the website.

Other Recursive
PostScript As I said at the start of this article, recursive programming can be very addictive. You

can find many examples on the web. (Searching Google for “PostScript recurs” returns
an even 1,400 hits.)

For an example of a non-graphic recursive program, the Acumen Training Resources
page contains QuickSort.ps, a QuickSort procedure implemented in PostScript. I wrote
this nine years ago and I’m not absolutely sure I’ll get a chance to spiff it up before
this issue of the Journal is posted, so the code may not be entirely exemplary.

Return to Menu

Acumen Journal: PostScript Tech 32

Recursive Programming in PostScript

Acumen Journal 33

Page Title

Schedule of Classes, Jun – Aug 2003
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes

PostScript Course Fees PostScript classes cost $2,000 per student.

On-Site Classes These classes may also be taught on your organization’s site. Registration Info →

Go to www.acumentraining.com/on-site.html for more information. Acrobat Classes →

PostScript Class Schedule

PostScript
Foundations

Jul 14–18

Variable Data
PostScript

Jun 16–20 Aug 18–22

Advanced
PostScript Aug 25–29

PostScript for
Support Engineers Jul 28–Aug 1

Jaws Development On-site only

New!

http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website
regarding setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1 -day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html
http://www.acumentraining.com/Onsite.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Well, Nothing
Very Much A quiet month, relatively speaking.

You have bought several copies of the new JavaScript
book, haven’t you?

www.acumentraining.com/Book-AcroJS.html

Return to First Page

Acumen Journal: What’s New

What’s New?

http://www.acumentraining.com/Book-AcroJS.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? After reading it, do you
unaccountably want to wash your hands with really hot water?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Fractal Tree, final

Acumen Journal

Fractal Tree 0

Acumen Journal

Fractal Tree 1

Acumen Journal

Fractal Tree 3

Acumen Journal

Acrobat 6 Field Properties

Acumen Journal

JavaScript Debugger

Acumen Journal

Fractal Tree 2

	btnHome:
	btnPrev:
	btnNext:
	btnGoBack:

