
Table of Contents

The Acrobat User JavaScripter: Acrobat 6 Pro’s JavaScript Debugger
Acrobat 6 Pro introduces a debugger for working with JavaScripts. Similar to debuggers in
other programming environments, this new tool is extremely useful to understanding how
a script works and tracking down errors.

PostScript Tech Printing Fully Justified Text in PostScript
This month we shall see how to carry out a common typographic task in PostScript:
setting fully justified text. This will give us an excuse to discuss the search operator.

Class Schedule Jul–Aug-Sep

What’s New? Announcing a new class: PDF File Content and Structure
A new, engineering-level course in PDF files from Acumen Training.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 27 © 2003 John Deubert, Acumen Training

John Deubert’s Acumen Journal, July 2003

Acumen
Training



JavaScripter: Acrobat 6 Pro’s JavaScript Debugger
Acrobat 6 Professional introduces a
feature of great importance to
JavaScript programmers: a JavaScript
debugger. This is a vastly useful tool
that will allow a JavaScript programmer
to much more effectively track down
bugs and weaknesses in scripts within
an Acrobat document.

You will have already seen the debug-
ger if you encountered any errors in
your JavaScript code. When a
JavaScript error occurs, Acrobat 6
drops you into the debugger at the
point in your code where the error takes place.

This month, we’re going to take a preliminary look at how to use
this debugger. My assumption is that you have done at least some
JavaScript programming with Acrobat, consistent with, say, having
read my book Extending Acrobat Forms With JavaScript.

(Hint. Hint.)

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

The JavaScript debugger
is available only in
Acrobat 6 Professional.
For brevity in this article,
I shall refer to this as
“Acrobat,” but remember
that this month’s topic
applies only to Pro.



Background
What’s a Debugger? A debugger is a piece of software whose purpose is to execute other programming code

in such a way that you can easily gather information about that other code, usually with
an eye toward diagnosing and fixing errors. All professional programming environments,
such as Microsoft’s .net environment and Metrowerk’s CodeWarrior, provide a debugger
to help the programmers fix their code.

Debugger Features Acrobat’s JavaScript debugger has all the features common to debuggers in other
environments. Specifically, the JavaScript debugger lets you do the following:

• Execute a particular script within the current Acrobat document.

• Execute that JavaScript one line at a time, pausing after each line.

• Define breakpoints within the JavaScript. When you run the script—either through the
debugger or by clicking on a button or other trigger within your Acrobat file—Acrobat
will halt execution of the script at the breakpoint’s position and launch the debugger.

• Examine and change the values of any variables or properties defined within a
paused script.

Next Page ->

Acumen Journal: Acrobat User 3

Acrobat 6 Pro’s JavaScript Debugger 



Debugger Basics
Enabling the Debugger To use the Acrobat debug-

ger, you must first ensure
that it is turned on. To do
this, go to the Acrobat
Preferences and select
JavaScript from the list of
categories on the left side.

There are two checkboxes
that are of particular
importance to us among
these preferences:

• Enable JavaScript
Debugger…

Make sure this checkbox is selected. Note that you will need to restart Acrobat
before the debugger becomes active.

• Store breakpoints in PDF file

All your breakpoints will be saved when you save an Acrobat document. This is very
convenient when debugging a complex form. (Make sure remove all your breakpoints—
or turn this feature off—when you save a form for distribution.)

Next Page ->

Acumen Journal: Acrobat User 4

Acrobat 6 Pro’s JavaScript Debugger



Sample File In the course of this article, we are going to
be discussing how to use the JavaScript
debugger with a particular sample Acrobat
file, pictured at right. This file is available on
the Acumen Training website’s Resources page
under the name JSDebugger.zip. You may
wish to download this file before continuing
with the rest of this article so that you can
follow along.

We are going to be using the debugger with
two scripts in this form:

• A Document JavaScript attached to the file.

• The Mouse Up JavaScript attached to the Close Form button.

This file is taken from the JavaScript book, by the way; it’s the sample file for Chapter 14.

Launching the Debugger Acrobat automatically launches the debug-
ger when an error takes place in a
JavaScript. For debugging purposes, you will
often want to explicitly launch the debugger
yourself by selecting
Advanced>JavaScript>Debugger.

Next Page ->

Acumen Journal: Acrobat User 5

Acrobat 6 Pro’s JavaScript Debugger

http://www.acumentraining.com/resources.html


Acrobat will present you with
the Debugger window, as at
right. This window has sev-
eral  sets of controls of spe-
cial interest to us:

• A set of buttons that con-
trol the execution of the
script we are debugging.

These buttons let us exe-
cute one line of code, run
the rest of the script, etc.
We shall discuss these in
more detail in a moment.

• A list of all the scripts available to this Acrobat file.
These are organized according to type of script:
Folder-level (executed by Acrobat at start-up),
Document-level, or Form scripts.

Next Page ->

Acumen Journal: Acrobat User 6

Acrobat 6 Pro’s JavaScript Debugger



• A large text box that lets us
see the JavaScript that we
are currently executing. The
line of code that will be
executed next is marked
with an arrow.

Using the pop-up menu
above this text box, we can
have the box alternatively
display the JavaScript console.

• A list of the names and values of all the variables
and object properties existing at this part of the
code. In the illustration at right, we can see that
the variable buttonCode currently has a value of 4.

The pop-up menu allows you to select among local
variables (visible only within this script), global variables (visible throughout the
document), breakpoints (where execution should pause) and something we won’t
discuss in this article: watches.

You can also change the values of the variables visible in the list.

Next Page ->

Acumen Journal: Acrobat User 7

Acrobat 6 Pro’s JavaScript Debugger



Using the
Debugger Let us use the debugger to step through the execution of part of one of the scripts in

our Constabulary form. The script I have in mind is the Mouse Up script for the form’s
“Close Form” button:

if (gBeenSubmitted == true)

this.closeDoc()

else {

var buttonCode  = app.alert("You haven't yet submitted your data.

\nDo you want to do so now?",2,3)

if (buttonCode  == 3)

this.closeDoc()

else if (buttonCode  == 4)    {

SubmitForm()

}

}

I want to examine the execution of this script starting at the line

if (buttonCode == 3)

to make sure it is running correctly.

I’m going to do this by setting a breakpoint (a pausing point) at that line in the script
and then single-step through the script from that point, on.

You may want to follow along using the sample file from the website.
Next Page ->

Acumen Journal: Acrobat User 8

Acrobat 6 Pro’s JavaScript Debugger



Setting the Breakpoint Let’s start by setting the breakpoint where we want our script to pause in its execution.

• Start with the form open in Acrobat and then launch the debugger (select
Advanced>JavaScript>Debugger).

You will be looking at the debugger window, as we saw earlier.

• In the list of scripts, open the AcroForm sublist and
select btnClose>Annot1>MouseUp>Action1, as at right.

The large text field in the lower half of the window
will now display the JavaScript code for the Close
Form button’s MouseUp event, as below right.

• Click on the minus sign to the left of the line 

if (buttonCode == 3)

The minus sign turns into a small, red “bullet,”
indicating that you
have placed a break-
point at that line.

Whenever the this script executes, Acrobat
will pause the script and launch the debugger
when it reaches this line.

Next Page ->

Acumen Journal: Acrobat User 9

Acrobat 6 Pro’s JavaScript Debugger



Running the Script Now close the debugger window and
click on the form’s Close Form button.
The button’s JavaScript will put up a
dialog box asking if you want to
Submit the form before closing, as at
right. Click the Yes button.

Acrobat will immediately
open the debugger and
pause execution of the
JavaScript. The debugger
window will look like the
illustration at right.

There is an arrow superim-
posed on the breakpoint
bullet, indicating this is
where we stopped.

Note that the variable list
(above and to the right of
the code listing) is now pop-
ulated with the variables
available to this script. Scroll
down this list and you will eventually find the variable buttonCode, whose value
will be 4 if you clicked the Yes button in the earlier alert.

Next Page ->

Acumen Journal: Acrobat User 10

Acrobat 6 Pro’s JavaScript Debugger



Changing Variable Values While you are paused in a script you can examine the
values of any of the variables in the Variables List.
You can also change those values (perhaps to see how
your script behaves with rarely-encountered values)
by selecting a variable and clicking on the “Change
Value” button, just below the list (highlighted at right).

Acrobat will present you with a dialog
box that lets you type in a new value
for the selected variable.

Be careful with this; in particular, don’t
change the values of any variables you
did not create in your own scripts. The Variable List contains all the variables that exist
at the time the break occurred in your script, including variables created and used by
Acrobat, itself. If you change Acrobat’s variables, you may change its behavior in
unpleasant ways (such as provoking a crash, perhaps).

Next Page ->

Acumen Journal: Acrobat User 11

Acrobat 6 Pro’s JavaScript Debugger



Stepping Through Code The yellow arrow lying on
top of the breakpoint bullet
points to the “current line”
in our script, the next line to
be executed.

The six navigation buttons at
the upper left of the
debugger window allows us
to execute our script in a
precise, controlled way.

The “Step Over” Button Click the “Step Over” button,
pictured at left. This button
tells the debugger to exe-
cute the current line of
JavaScript code (the line marked with the yellow arrow) and pause at the next
executable line in this script.

In our case, the debugger executes the if command, which looks at the boolean
expression “buttonCode == 3”. This expression evaluates to false, since you clicked the
Yes button in the Do you want to submit… dialog box (which sets buttonCode to 4).
The debugger moves the “current line” arrow to the next
executable line, the else statement. (It skips over the call
to this.closeDoc, since the if boolean expression is false.)

Next Page ->

Acumen Journal: Acrobat User 12

Acrobat 6 Pro’s JavaScript Debugger



Click the Step Over button again and the debugger will
execute the else if line. Since this boolean expression
(buttonCode == 4) is true, execution will move to the
invocation of SubmitForm.

The “Step Into” Button Now we have an interesting situation. If we click the Step Over button again, the
debugger will execute SubmitForm and move the Current Line arrow to the next line in
the script (which, in our case, is the end of the script).

However, SubmitForm is, itself, a JavaScript procedure. If we want to follow the execu-
tion of our JavaScript into the execution of SubmitForm, executing that procedure’s
statements one at a time, we need to click on the Step Into button, shown at left.

When we do so, the Current Line
arrow will move to the first line in
the definition of SubmitForm. We
can now use the Step Over button
to step through the remainder of
SubmitForm.

When execution reaches the end of
SubmitForm, another click of the
Step Over button returns us to the
Close Form script, whence we came.

Next Page ->

Acumen Journal: Acrobat User 13

Acrobat 6 Pro’s JavaScript Debugger



The “Step Out” Button If, while stepping through the SubmitForm procedure, we want to just execute the rest
of that procedure and return to the Close Form script (or whatever script executed
SubmitForm), we can do so easily by clicking the Step Out button.

This button tells the debugger to execute the remainder of the current procedure and
then pause upon returning to the script that executed the procedure.

Finishing Up When you are finished stepping through your script, you can click the Resume Execution
button. This tells Acrobat to continue executing your script without pausing at each
line. THe script will execute all the way to the end (as it would if you weren’t running
the debugger) or until it encounters another breakpoint.

Halting Execution If you need to completely halt the execution of your JavaScript, you can click on the
Quit button. This tells Acrobat to immediately cease execution of your JavaScript and
exit the debugger.

Setting Interrupts The Set Interrupt button tells Acrobat to launch the debugger the next time the user
does something that triggers a JavaScript.

Thus, rather than opening a script in the debugger and explicitly setting a breakpoint,
you can launch the debugger and click the Set Interrupt, then click on a button or take
some other action in your form that runs a JavaScript.

Next Page ->

Acumen Journal: Acrobat User 14

Acrobat 6 Pro’s JavaScript Debugger



A Welcome
Addition Acrobat 6 Pro’s new JavaScript debugger is a very powerful tool for examining how your

scripts are working (or not). If you have never used such a debugger before, you will
find this new feature makes for a whole new scripting experience. 

You’ll wonder how you did without it!

The Official
Documentation For complete information on using the JavaScript

debugger, you should look at Adobe’s Acrobat
JavaScript Scripting Guide (Tech note 5430). This
is available from Adobe’s website; a link to this
PDF file is also on the Acumen Training Resources
page.

Return to Main Menu

Acumen Journal: Acrobat User 15

Acrobat 6 Pro’s JavaScript Debugger

http://www.acumentraining.com/resources.html
http://www.acumentraining.com/resources.html


Fully Justified Text
The show operator is the primary PostScript tool for printing text. It takes a string from
the operand stack and prints that string in the current font starting at the current point.

In Western typography, there is a printing task that continually comes up and must be
addressed: printing text that is right-aligned, centered, or fully-justified. The first two
of these are very easy tasks; the third is less obvious in its implementation.

This month, we shall see how to print a string fully justified—both flush right and left—
within the left and right margins.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

If you tell the truth, you
don't have to remember

anything.
- Mark Twain

If you tell the truth, you
don't have to remember

anything.
- Mark Twain

If you tell the truth, you
don't have to remember
anything.
- Mark Twain



Easy Ones First Print text right aligned or centered is relatively easy. To print
text right aligned against the current point you simply do the
following:

Right-aligned Text • Calculate the width of the string.

• Move the current point (the red dot at right) back
by that distance.

• Print the string with show.

Here is a PostScript procedure, rshow, that does the job:

/rshow %  (str)  =>  ---

{ dup stringwidth pop % Find the string’s width on the page

neg 0 rmoveto % Move the currentpoint back by the width

show % Print the string

} bind def

/Helvetica 14 selectfont

100 200 moveto

(If you tell the truth, you) rshow

100 180 moveto

(don’t have to remember) rshow

100 160 moveto

(anything) rshow

Next Page ->

Acumen Journal: PostScript Tech 17

Fully Justified Text

If you tell the truth, you
don't have to remember

anything.
- Mark Twain

This month’s examples
are in the file
alignedText.zip on the
Acumen Training
resources page.

If you tell the truth, you

http://www.acumentraining.com/resources.html


Centered Text Centered text follows almost exactly the same procedure,
except that we move the current point back by only half the
string’s width, as in the following definition of cshow:

/cshow %  (str)  =>  ---

{ dup stringwidth pop % Find the string’s width on the page

-2 div 0 rmoveto % Move the currentpoint back by half the width

show % Print the string

} bind def

/Helvetica 14 selectfont

100 200 moveto

(If you tell the truth, you) cshow

100 180 moveto

(don’t have to remember) cshow

100 160 moveto

(anything) cshow

Next Page ->

Acumen Journal: PostScript Tech 18

Fully Justified Text

If you tell the truth, you
don't have to remember

anything.
- Mark Twain



Full Justification Printing a string with full justification is trickier than simple right or center alignment.
The simplest method for preforming this task is as follows:

• Calculate how much whitespace would be left between the
end of the string and the right margin if the string were
printed normally (the blue line in the diagram at right).

• Print the string, distributing the end-of-line whitespace between the words, as in the
second line of text in the diagram.

There are other ways, arguably better, of carrying out full justification; we’ll discuss
these shortly. For now let’s stay with the simple method.

The widthshow operator Key to printing fully justified text is the widthshow operator:

∆x ∆y cc (str) widthshow => ---

This operator takes an x and y offset, a character code, and a string. It prints the
string, offsetting the current point by ∆x and ∆y after each instance of the character
code cc. In printing fully justified text, the character code will be that of the space
character, typically 32.

Next Page ->

Acumen Journal: PostScript Tech 19

Fully Justified Text

If you tell the truth,
If you tell the truth,



The jshow procedure The following program defines a procedure, jshow, that takes a
string and the position of the right margin and prints the string
fully justified between the current point and the specified
margin. The output from this program is at right.

/jshow %  (str)  rm  =>  ---

{ currentpoint pop sub %  Calculate the “measure” (rm - current x)
1 index stringwidth pop sub %  Calc. measure - string’s width

/spcCount 0 def %  spcCount will count spaces

1 index ( ) %  stk: (str) wtspc (str) ( )

{ search %  Begin loop with call to search
{ /spcCount spcCount 1 add def  %  Space found: incr. spcCount...

pop %  ...and discard the word before the space

}

{ pop exit } %  Space not found: we’re done; leave loop

ifelse

} loop

spcCount 0 eq %  Did we find any spaces?

{ pop show } %  No: discard measure and show string
{ spcCount div %  Yes: divide the whitespace amt by spcCount

0 32 %  stk:   (str) ∆x 0 32
4 -1 roll %  stk:   ∆x 0 32 (str)
widthshow

}

ifelse

} bind def

Next Page ->

Acumen Journal: PostScript Tech 20

Fully Justified Text

If you tell the truth, you
don't have to remember
anything.
- Mark Twain

Terminology: measure

In typesetting, the
“measure” is the distance
between the left and right
margins.



/nl %  This is a standard “newline” procedure. See your PS student notes.

{ 0 currentpoint exch pop 16 sub moveto } bind def

72 600 translate %  I like to print at the origin

1 0 0 setrgbcolor %  Print a red rectangle

0 0 150 80 rectstroke

/Helvetica 14 selectfont %  Now print our text

0 setgray

0 65 moveto

(If you tell the truth, you) 150 jshow nl

(don't have to remember) 150 jshow nl

(anything.) 150 jshow nl

(- Mark Twain) 150 jshow nl

Step by Step /jshow %  (str)  rm  =>  ---

Our jshow procedure will take a string and the x value of our right margin from the
operand stack and print the string fully justified between the current point and the
specified margin.

{ currentpoint pop sub % stk: (str) rm–x

Our procedure starts by calculating the difference between the right margin and our
current x position. This is the distance within which we shall justify our text.

Next Page ->

Acumen Journal: PostScript Tech 21

Fully Justified Text



1 index stringwidth pop sub %  stk:  (str) whiteSpcAmt

We then find the width our our string, using the stringwidth operator, and subtract this
from the distance between our margins. The result, left on the stack, is the amount of
“whitespace” between the string’s native length (without justification) and the right
margin. This is the space we shall need to distribute between the words in our string.

Remember that the stringwidth operator takes a string from the stack and returns the
distance in x and y that the current point would move if we were to print that string.

(str) stringwidth => ∆x ∆y

In our case, ∆y will be zero, since our text prints horizontally; ∆x is the width of our
string, the number we want for our calculation. In our PostScript code, above, we discard
the y and subtract the x from the size of the measure.

/spcCount 0 def %  stk:  (str) whiteSpcAmt

We now need to determine how many spaces there are in the string. We start by creating
a variable, spcCount, that will hold the number of space characters.

1 index ( ) %  stk:  (str) whiteSpcAmt (str) ( )

We load the top of the stack with a copy of our string and a new string containing a single
space character. We are going to use these as arguments in a call to the search operator.

Next Page ->

Acumen Journal: PostScript Tech 22

Fully Justified Text



{ search

We now initiate an indefinite loop. Each time through this loop, we shall search the
string for another space. If we find one, we shall increment spcCount; otherwise, we
shall leave the loop.

The loop starts with a call to the search operator.

(str) (tgt) search  => (post) (tgt) (pre) true

or (str) false

The search operator searches for the first instance of tgt in str. If the search is successful,
search returns the following on the stack: the text that follows the instance of tgt in
str; the target string again; the text the preceded tgt in the original string; the
boolean value true. If the search fails, search returns the string, unchanged, and the
boolean false.

In our case, search will find our string and a space character on the stack. The operator
searches for the first space in our text, returning arguments appropriate to whether it
finds one or not.

{ /spcCount spcCount 1 add def  % stk: (str) whiteSpcAmt (post) ( ) (pre)
pop % stk: (str) whiteSpcAmt (post) ( )

}

If we successfully find a space character, we increment spcCount and discard the word
preceding the space. having done this, the two topmost items on the stack are exactly
what we need to find the next space in our text: a string holding the text that followed
the space character in our original string and a string containing a space character.

Next Page ->

Acumen Journal: PostScript Tech 23

Fully Justified Text



{ pop exit } % stk: (str) whiteSpcAmt
ifelse

If search fails to find a space character, we discard the copy of the string left on the
stack and exit from the loop.

} loop % stk: (str) whiteSpcAmt

This is the end of our loop. We continue circling through this loop, each time looking
for a space and incrementing spcCount until we run out of spaces, at which point we
exit from the loop.

When we exit the loop, spcCount will contain the number of spaces in our original
string. The operand stack will contain our original string, unchanged, and the length of
the whitespace that we need to distribute among the words. Both of these were on the
stack when we entered the loop; the loop had no effect on them.

spcCount 0 eq

We check to see if spcCount is zero, that is, if our original string had no spaces in it. If
this is true, we are going to just print our string left-justified, using show.

{ pop show }

This is the true clause of our ifelse, executed if spcCount is zero. In this case, we pop
the whitespace distance off the stack and then show the string. That is, if there are no
spaces in our string (it consists of only one word), then we print our string left justified.

Next Page ->

Acumen Journal: PostScript Tech 24

Fully Justified Text



{ spcCount div % stk: (str) ∆x
0 32 % stk: (str) ∆x 0 32
4 -1 roll % stk: ∆x 0 32 (str)
widthshow

}
ifelse

If spcCount is not zero, meaning our string has more than one word in it, then we print
the string using stringwidth:

• We divide the whitespace amount (still on the stack after exiting our loop) by
spcCount, yielding the amount of space (called ∆x in the comments above) we need
to add between each pair of words in our string.

• We push a zero and 32 on the stack (the y offset and the character code for space).

• We roll the stack contents into the correct order for a call to widthshow.

• We execute widthshow.

} bind def

This ends our definition of jshow; now it’s time to use the new procedure.

/nl
{ 0 currentpoint exch pop 16 sub moveto } bind def

We define a fairly standard “newline” procedure. This procedure moves the current
point down by 16 points and back to a left margin of zero. I’m not going to step
through this in detail; you have examined a very similar procedure if you have taken

Next Page ->

Acumen Journal: PostScript Tech 25

Fully Justified Text



either the PostScript Foundations or PostScript for Support Engineers class. (You do
still have your student notes, don’t you?)

72 600 translate

We move the origin to some convenient place on the page. (This is just because I have
a bias toward drawing things at the origin.)

1 0 0 setrgbcolor
0 0 150 40 rectstroke

We draw a red rectangle into which we shall be drawing our justified text.

/Helvetica 14 selectfont
0 setgray
0 65 moveto

We set our current font to Helvetica, set the current color to black, and move to an initial
position on the page.

(If you tell the truth, you) 150 jshow nl
(don't have to remember) 150 jshow nl
(anything.) 150 jshow nl
(- Mark Twain) 150 jshow nl

Now we print our text, fully justified.

Next Page ->

Acumen Journal: PostScript Tech 26

Fully Justified Text

If you tell the truth, you
don't have to remember
anything.
- Mark Twain



Other Justification
Methods The method of justifying text we use here is the simplest and, to many typesetters’

eyes, remarkably ugly. There are many other methods that yield subtly different
results that many typesetters prefer.

For example, one alternative method takes the end-of-line whitespace and distributes
one quarter of it between all the characters in the string and the other three quarters
between the words. This makes the amount of extra space
between words less jarring to the eye. (In the illustration at
right, the bottom illustration uses this method; the top illus-
tration uses the simple method of our jshow procedure.)

awidthshow You do such justification with the awidthshow operator:

∆x1 ∆y1 cc ∆x2 ∆y2 (str) awidthshow

The awidthshow operator prints the string, adding ∆x2 and ∆y2 after each character and
an additional ∆x1 and ∆y1 after each instance of character code cc.

The file alignedText.zip, on the Acumen Training Resources page, contains a file
jshow2.ps, that defines a procedure that implements this 1⁄4–3⁄4 method of justification. 

I’ll let you examine it on your own.

Return to Main Menu

Acumen Journal: PostScript Tech 27

Fully Justified Text

One two three four
One two three four



Acumen Journal 28

Page Title

Schedule of Classes, July – Sept 2003
Following are the dates and locations of Acumen Training’s upcoming PostScript and PDF
Technical classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

Technical Classes

Technical Course Fees The PostScript and PDF classes cost $2,000 per student. Registration Info →

Acrobat Classes →

PostScript & PDF Class Schedule

PDF File Content
and Structure Sep 29–Oct 2

PostScript
Foundations

Jul 14–18 Sep 15–19

Variable Data
PostScript

Aug 18–22

Advanced
PostScript Aug 25–29

PostScript for
Support Engineers Jul 28–Aug 1

Jaws Development On-site only

New!

On-site Classes

These classes may also be
taught on your organiza-
tion’s site. Go to Acumen
Training’s On-site Classes
page for more information.

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_Jaws.html
http://www.acumentraining.com/Onsite.html


Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website
regarding setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1 -day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html
http://www.acumentraining.com/Onsite.html


Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html


What’s New at Acumen Training?

PDF File Content
and Structure September will see the introduction of a new, much-requested engineering class.

PDF File Content and Structure is a four day, hands-on class on PDF files, intended
primarily for printer engineers and support personnel. The course describes how a PDF
file is organized and constructed, how it draws on the page, how fonts are handled,
everything, in fact, that has an impact on the interpreting of a PDF file by a printer.
Although the course will be extremely useful for people who must construct PDF files, it
is intended primarily for people working with printing devices that must consume PDF files.

Topics The following is a partial list of topics in the course:

• PDF File Format Overview • Images

• PDF Data Types • Transparency

• Objects and Streams • Linearized PDF

• The Page Tree • Font embedding

• Drawing Commands • Color in PDF

• Text Commands • PDF from PostScript (pdfmark)

For More Information For more information about this class, go to the Acumen Training PDF FC&S web page.

Return to First Page

Acumen Journal: What’s New

What’s New?

Availability

The first public presenta-
tion of PDF File Content
and Structure will be
Sept 29 – Oct 2.

The course will be avail-
able for on-site classes
beginning in October.

http://www.acumentraining.com/Descr_TechPDF.html


Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Does it make you think
that perhaps Frodo Baggins was right?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com


Acumen Journal

JavaScript Debugger Window



Acumen Journal

JavaScript listing showing the next executable line



Acumen Journal

Stopped at a Breakpoint


	btnNext: 
	btnPrev: 
	btnHome: 


