
Table of Contents

The Acrobat User Exporting Form Data to a Spreadsheet in Acrobat 7
Acrobat 7 lets you convert a set of fdf form data files into a single, comma-delimited
file that may be imported into your favorite spreadsheet. This is a great aid for
those who don’t have server-side processing software.

PostScript Tech A Bullet-Proof Minimum Linewidth
People who import EPS files may need to impose a lower limit on linewidths so that hairlines
don’t disappear. This is relatively easy to do, but making it work regardless of the current
state of User Space is a little tricky; we shall use the rarely-seen dtransform operator.

Class Schedule Jan–Apr

What’s New? Still Working on PDF File Content and Structure 2
The second PDF File Content and Structure class will be ready early 2005.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 37 © 2005 John Deubert, Acumen Training

John Deubert’s Acumen Journal, January 2005

Acrobat User

Acumen Journal: Acrobat User 2

Exporting Form Data to a Spreadsheet in Acrobat 7
Welcome to 2005, everyone.

With the new year comes a
new version of Acrobat, nicely
improved in many ways
from Acrobat 6. This month’s
relatively short article will
look at one of Acrobat 7’s
new features: the ability to
convert a series of Acrobat form output files into a single file that can be opened in
Excel or any other spreadsheet application or database manager.

The feature is pretty easy to use; I thought we’d start the year with something short
and simple.

Next Page ->

Files on Website

As usual, the files associated
with this article are available
on the Acumen Training
Resources page. Look for
the file
ExportToSpreadsheet.zip.

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User 3

Exporting Form Data to a Spreadsheet in Acrobat 7

Background
Submitting Form Data Consider the simple Acrobat form at right.

The user enters the appropriate information and
then clicks the Pay button. What happens then?

Somehow, the information the user placed in the
form fields must be sent to the organization that
distributed the form. This is referred to generically
as submitting the form data. There are two common
ways of doing this:

• The form data can be submitted to the ur l of
a piece of server software that will process the
incoming form data and do something useful
with it, such as place it in a database.

• The form data can be submitted to an email
address, in which case the data will be packaged
into an FDF file (“form data format”) and sent to the specified address as an email
attachment.

 FDF is an Acrobat-specific file format intended specifically to contain information
from an Acrobat form. It is relatively compact and easily parsed, allowing other
software to extract the original form data.
 Next Page ->

Acumen Journal: Acrobat User 4

Exporting Form Data to a Spreadsheet in Acrobat 7

Submitting to a URL is the better way to do things if you are comfortable setting up
server-based programs or have an IT department to do such things. For many people,
however, the second method allows them to create and distribute an Acrobat form
and retrieve responses without having to do additional programming or set up a
server-based process.

What you normally do with these FDF files is import them into your copy of the original
form. Acrobat populates the form’s fields with data from the FDF file. You can then
transfer this data—by hand—to your database manager or whatever else you wish.

Export to Spreadsheet
(or database!) If you retrieve data from a widely-distributed form

as FDF files, you will accumulate a possibly large
number of these files that must be laboriously
imported into Acrobat and the data in them
transcribed into your database program. This is
tedious at best.

Acrobat 7’s Export to Spreadsheet feature gives us an alternative. This feature creates
a comma-delimited text file out of the form data in a set of FDF files. This comma-
delimited file may be opened in a spreadsheet program, such as Excel. It may also be
imported into most database applications, such as FileMaker or Access.

This feature makes it easy to transfer Acrobat form data to a database or otherwise use it
as you wish. Next Page ->

Acumen Journal: Acrobat User 5

Exporting Form Data to a Spreadsheet in Acrobat 7

The feature is remarkably easy to use.

Let’s look at the steps.

Using Export to
Spreadsheet This discussion assumes you have accumulated several FDF files containing information

from an Acrobat form you have distributed. Presumably, people have filled out the
form and clicked a “Submit” button that you have set up to email the form data, as an
FDF file, to you.

(How to create such a form is beyond the scope of this article. Any
good book on Acrobat forms—such as my own Creating Acrobat
Forms—will step you through the process.)

Next Page ->

Acumen Journal: Acrobat User 6

Exporting Form Data to a Spreadsheet in Acrobat 7

Creating the Export File To export these FDF files to a single comma-delimited text file, do the following:

1. Select File>Form Data>Create
Spreadsheet From Data Files...

Acrobat will present you with the
Export Data dialog box, that allows
you to create a list of f df files whose
data you want to include in your
comma-delimited file.

2. Click on the Add Files button.

 Acrobat will present you with a standard
Select-a-File dialog box.

Next Page ->

Acumen Journal: Acrobat User 7

Exporting Form Data to a Spreadsheet in Acrobat 7

3. Select the f df files whose data you want to export to a comma-delimited file.

 When you return to the Export Data
dialog box, the list will now be
populated with the files you selected.

 Note that the order in which the files
are entered here has no bearing on the
order in which the data is entered in
the final export file. As far as I can tell,
the data will be added to the comma-
delimited file in alphabetical order
based on the names of the f df files.

4. Click on the Export button.

 Acrobat will ask you for the name you want for the output file and then create a
file whose suffix is csv. This is your comma-delimited spreadsheet file.

Next Page ->

Acumen Journal: Acrobat User 8

Exporting Form Data to a Spreadsheet in Acrobat 7

Using the File
Spreadsheet Software The csv file may be directly

opened in any spreadsheet
program. Simply open the
file as you would any other
spreadsheet document.
The result will be as in the
illustration at right.

Examining this window, you can see that each row in spreadsheet represents data
from one FDF file. The first column in each row contains the name of that row’s source
FDF file; each of the other columns contains data from one of the form’s fields. The
first row contains the Acrobat names of the individual form fields.

Database Software Your database software almost certainly can import comma-delimited text files. The
exact procedure will vary from one program to another, but as an example, here’s
how you would do this in my rather aged FileMaker Pro 5:

You must have already created a database that has fields corresponding to those in
your Acrobat form. With that database file open:

1. Select File>Import Records…

 Filemaker will present you with a Select-a-File dialog box.
 Next Page ->

Acumen Journal: Acrobat User 9

Exporting Form Data to a Spreadsheet in Acrobat 7

2. Select your cvs file.

 FileMaker will present you
with the dialog box at right,
that allows you to indicate the
correspondence between the
comma-delimited fields in the
cvs file and fields in the database.

3. Drag the field names up and
down the list until the incoming
data are correctly aligned with
the database’s fields.

4. Click the Import button.

FileMaker will import the data
in the cvs file into the database,
adding a record to the file for each line of data in the cvs file.

Next Page ->

Acumen Journal: Acrobat User 10

Exporting Form Data to a Spreadsheet in Acrobat 7

An Important
Feature I cannot emphasize how much easier this will make the lives of many—perhaps

most—people who use Acrobat forms. Up to now, unless you were comfortable with
writing or parameterizing server software, the only way you could use data from
Acrobat forms was to tediously import the FDF files into your copy of the form and
transcribe the data by hand.

The Export to Spreadsheet feature makes Acrobat forms very much more usable for
everyone who does not have an IT department on tap.

Return to Main Menu

PostScript Tech

Acumen Journal: PostScript Tech 11

A Bulletproof Minimum Linewidth
A surprisingly large fraction of the software
that produce PostScript files implement
their hairlines with a linewidth of 0. That
is, if you select Hairline as linewidth, at
print time they generate

 0 setlinewidth

As you recall, this causes PostScript to
produce a line that is one device pixel thick; this looks perfectly good (very good, in
fact) on a low-resolution laser printer, but when sent to an imagesetter or other high-
resolution device, the ¹⁄3000-lines disappear completely.

This can be a problem if you are using this driver-generated code for your own purposes
(perhaps concatenating several files together). To prevent hairlines from disappearing,
you need to somehow force a minimum linewidth, arranging things so that linewidths
less than some threshold value are replaced with that minimum. This is best done
with a redefinition of the setlinewidth operator.

This is relatively easy, though there is a trick to doing it well. In particular, you need to
somehow accommodate the case where the User Space has been severely scaled.

Let’s see how to do this.

Next Page ->

Acumen Journal: PostScript Tech 12

A Bullet-Proof Minimum Linewidth

Redefining
setlinewidth Our first redefinition of setlinewidth is relatively simple: simply check whether the

argument on the stack is less than some threshold value and, if so, replace the value
with that threshold value. Here’s the code:

/minLineWidth .2 def % Our threshold value

/setlinewidth % Redefine setlinewidth
{ dup minLineWidth lt % Arg value < minLineWidth?
 { pop minLineWidth } if % Yes: replace value
 setlinewidth % Do a real setlinewidth
} bind def % The bind prevents recursion

% Let’s try it out:
100 600 translate
5 setlinewidth 0 -125 translate 0 0 200 100 rectstroke
.2 setlinewidth 0 -125 translate 0 0 200 100 rectstroke
.1 setlinewidth 0 -125 translate 0 0 200 100 rectstroke
.05 setlinewidth 0 -125 translate 0 0 200 100 rectstroke

If you execute the above code and then examine the output, you will find that the
bottom three rectangles actually all have the same linewidth: 0.2 points.

Next Page ->

Files on Website

The PostScript code for this
article is on the Acumen
Training Resources page.
Look among the PostScript
samples for setlinewidth.zip.

This first example is in the
zip file as setlinewidth 1.ps.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech 13

A Bullet-Proof Minimum Linewidth

So, What’s the
Problem? The above redefinition works very well as long as we are working within default User

Space. However, we cannot count on this in the general case; if the PostScript code
has done a scale, then we can get behavior we don’t want. For example:

.001 .001 scale
1 setlinewidth
stroke

In the above code, our redefinition of setlinewidth will consider the linewidth, 1, to be
above the minimum. However, since we are scaling down to such a large degree, a
linewidth of 1 User Space unit will be extremely thin, far below our minimum linewidth.

A similar problem is possible if the PostScript code scales up, as in the code below:

100 100 scale
0 setlinewidth
stroke

In this case, our setlinewidth definition will correctly interpret its argument as being
less than the minimum linewidth, but when it eventually sets the linewidth to the
substitute value, that new value will be interpreted in the current User Space; in our
case a linewidth of, say, 0.2 will yield a line that is 20 points thick.

Next Page ->

Acumen Journal: PostScript Tech 14

A Bullet-Proof Minimum Linewidth

How Do We Fix It? To fix this problem we can convert our linewidths into Device Space and perform all our
comparisons there. That is, we shall initially convert our minimum linewidth to Device
Space and store the result as our minimum linewidth. Our setlinewidth redefinition
will convert the requested linewidth to Device Space and compare it to our Device
Space minimum linewidth. If it needs to use the substitute, it will convert that minimum
linewidth to the current User Space and then a call systemdict’s setlinewidth.

dtransform & idtransform This solution to our problem is made easy by the use of the dtransform and idtrans-
form operators.

 ∆xus ∆yus dtransform => ∆xds ∆yds

 ∆xds ∆yds idtransform => ∆xus ∆yus

These little-noticed operators convert an x,y distance between User Space and Device
Space. The dtransform operator takes a User Space x and y offset as its arguments and
returns the same offset expressed in Device Space. The idtransform operator performs
the reverse operation, converting a Device Space offset into its User Space equivalent.

We shall use these operators to convert the minimum and requested linewidths
between User and Device Spaces.

Next Page ->

Acumen Journal: PostScript Tech 15

A Bullet-Proof Minimum Linewidth

Our new setlinewidth Here’s the new code:

/dsMinLineWidth
 .5 dup dtransform pop % Cvt min. linewidth to Dvc Space
 def

/setlinewidth % lw => ---
{ dup % Save linewidth (lw) for later
 dup dtransform pop % Convert lw to Device Space
 dsMinLineWidth lt % Is it less than our minimum?
 { pop % Yes: discard requested lw…
 dsMinLineWidth % …& replace with our minimum lw…
 dup idtransform pop % …converted to current User Space
 }if
 setlinewidth % Now perform an actual setlinewidth
} bind def % Do not forget the bind!

Step by step Let’s examine this in detail.

/dsMinLineWidth

We shall save our minimum linewidth, expressed in Device Space units, in a variable
named dsMinLineWidth. (The “ds” stands for “Device Space.”)

Next Page ->

Files on Website

This second redefinition
(followed by some code that
tests it, presented later in
the article) is in this month’s
zip file as setlinewidth 2.ps.

Acumen Journal: PostScript Tech 16

A Bullet-Proof Minimum Linewidth

 .5 dup dtransform pop
 def

We are going to maintain a minimum linewidth of half a point. Here we convert
our minimum value Device Space and use def to save the result with the key name
dsMinLineWidth.

Note that we need to do a dup on the linewidth because dtransform expects two
arguments, an x and a y. Likewise, the operator returns two values on the stack, of
which we need only one; hence, the final pop.

/setlinewidth % lw => ---
{ dup % => lw lw

Our redefinition of setlinewidth begins by duplicating the requested linewidth on the
stack. If this value is less than our minimum, then we shall discard this number and
replace it with our minimum.

 dup dtransform pop % => lw dvc_lw

Here we convert our requested linewidth to Device Space. (Note again the odd dup
dtransform pop idiom made necessary by the way dtransform works.)

 dsMinLineWidth lt % => lw bool

We compare the requested linewidth, now converted to Device Space, to our minimum
linewidth, also expressed in Device Space.

Note that the original linewidth request still resides on the stack, beneath the boolean
pushed on the stack by lt. Next Page ->

Acumen Journal: PostScript Tech 17

A Bullet-Proof Minimum Linewidth

 { pop % => ---
 dsMinLineWidth % => dvcMin
 dup idtransform pop % => usrMin
 }if

If the requested linewidth is smaller than our minimum, we do three things:

• Discard the original requested linewidth with a pop.

• Push the minimum linewidth (in Device Space units) onto the stack.

• Convert this to the current User Space with idtransform.

Note that it is important that the minimum linewidth be converted to User Space
every time we do a setlinewidth, since the actual value we give to setlinewidth will be
dictated by the state of User Space at execution time.

The if clause will leave on the stack the linewidth we want to use. It will either be the
original requested value or our minimum value expressed in the current User Space

 setlinewidth
} bind def

Our redefinition ends by calling setlinewidth. Note that the bind is absolutely necessary
in this definition, since it keeps the final, internal call to setlinewidth from recursively
calling our redefinition. This final setlinewidth will be the one in systemdict. (Refer back
to your PostScript student notes for a reminder of what bind does.)

Next Page ->

Acumen Journal: PostScript Tech 18

A Bullet-Proof Minimum Linewidth

But, Does It Work? Of course it does!

Oh, alright; if you want to test it, paste the following code after the redefinition and
execute the combined code:

% First show that we aren’t affecting linewidths over our threshold
100 700 translate
2 setlinewidth 0 0 200 50 rectstroke

% All of the following should print with a linewidth of .5 points
0 -75 translate
.5 setlinewidth 0 0 200 50 rectstroke

0 -75 translate
gsave
.01 .01 scale
1 setlinewidth 0 0 20000 5000 rectstroke
grestore

0 -75 translate
gsave
100 100 scale
.001 setlinewidth 0 0 2 .5 rectstroke
grestore
 Next Page ->

Acumen Journal: PostScript Tech 19

A Bullet-Proof Minimum Linewidth

Final Notes
When Would

I Use This? People who need to force a minimum linewidth are usually doing one of two things:

• Concatenating or otherwise reusing PostScript output from other drivers.

• Importing Encapsulated PostScript code into their own PostScript code.

In both cases, they are using PostScript code taken from more-or-less arbitrary sources.
Such PostScript code can do all sorts of strange and wondrous things, including
specifying excessively small linewidths.

Redefinition
Comes first! It is important that this redefinition of setlinewidth come before pretty much anything

else in your PostScript stream. In particular, it is important that the currently-available
setlinewidth at the time you do your redefinition is the systemdict-resident operator
definition. Otherwise, you risk having the internal call to setlinewidth be recursive.

Just make sure the redefinition precedes the EPS code or driver output with which
you are working and all will be well.

Return to Main Menu

Thanks, Charly!

Charly Tischler of Océ Printing
Systems GmbH pointed out
the embarrassingly long-
standing weakness in my
usual setlinewidth redefinition
that led to this article.

Ah, well. Better smart late
than never. Thanks, Charly.

Schedule of Classes, Jan – Apr 2005
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class
on the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

PDF File Content
and Structure

Mar 21–24

PostScript
Foundations Jan 31–Feb 4

Variable Data
PostScript

Advanced
PostScript Mar 7–11

PostScript for
Support Engineers Apr 4–8

Jaws Development On-site only

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate
sites. Clicking on a course name below will take you to the class description on the
Acumen Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
organization sign up for the same class.

 Registration ->

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

New PDF Class Nothing too new this month. I am still in the early stages of laying out the second
PDF File Content and Structure class. The topic list is below; as before, if you think
something should be added to or dropped from this list, send an email to
john@acumentraining.com.

Preliminary Topic List Overprinting File Spec Patterns
CID Fonts Masked Images Composite Fonts
Halftones Digital Signatures Linearized PDF
Marked Content AcroForm Stroke Adjustment
Rendering Intents Transfer Functions Halftones
Smooth shading Shape dictionaries Text Knockout
Reference XObjects Layers Object streams
Cross reference streams Name Dictionaries More on data structures
BX & EX Return to First Page

What’s New?

Acumen Journal: What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it remind you of
your old Uncle Jasper, who would always drone on and on about some incident in his
youth involving a goat and a ball of twine and yet never quite finished the story?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Creating a List of FDF Files

Acumen Journal

Creating a List of FDF Files

Acumen Journal

Data Opened in Spreadsheet

Acumen Journal

FileMaker Pro 5’s Field Mapping Dialog Box

Acumen Journal

Form Data Imported Into Database

	btnHome:
	btnNextPg:
	btnPrevPage:

