
Table of Contents

The Acrobat User Image Resampling in Acrobat Distiller
Distiller and many other programs that create PDF files allow you to resample the images
placed in that file. Most people are vague about what resampling is and how it differs from
compression. This month we look at this powerful feature.

PostScript Tech Handling PostScript Errors, Part 1
The default PostScript error handler typically sends the name of the error and the offending
command to the output stream. This month and next, we’ll see how to write our own error
handler to report on additional information and print the message to the current page.

Class Schedule May-Aug

What’s New? Nothing new really. Been busy.
The second PDF File Content and Structure class will be ready mid 2005. Really!

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 38 © 2005 John Deubert, Acumen Training

John Deubert’s Acumen Journal, April 2005

Acrobat User

Acumen Journal: Acrobat User 2

Image Resampling in Acrobat Distiller
Among Distiller’s PDF settings, you will find a
set of controls that dictate whether and how
images in the PDF file should be compressed.

For compression, you get your choice among
ZIP and various flavors of JPEG. There are also
three controls in each group—a pop-up menu
and two text fields—that ask you if, when, and
how you want images to be “sampled.”

Many people find these controls genuinely
alarming, so this month we shall look at what,
exactly, sampling is and how you should set
these controls. This is worth knowing because
resampling your image data is a
powerful way of greatly reducing
PDF file size and, simultaneously,
improving the appearance of some
of the images in your file.

Truly, image resampling is a Good
Thing in the PDF world and well worth learning about.

So let’s learn. Next Page ->

Acumen Journal: Acrobat User 3

Image Resampling

Background:
What’s it for? Image resampling addresses itself to the case where an image has more data in it

than the printer or display device can reproduce.

Consider the image at right. The original of this image
had a size of 507 x 676 pixels. At right this image has
been reproduced on the screen nominally 2½ inches
wide (ignoring details like the pitch of your screen).

Five hundred seven image pixels spread across a width
of 2½ inches comes to a final, scaled resolution of about
200 pixels per inch. This is far more data than the your
computer screen can reproduce. In fact, you could discard
a remarkable amount of this data and the difference
would never be noticeable.

This is what image resampling is: removing data from an
image to match the amount of data a display or printing
device can actually use.

We could the image at right from 200 dpi to 72 dpi, discarding about 87% of the original
data. Done right (and we’ll discuss what that means), there would be no perceptible
difference in quality, since the screen only used 13% of the original data in the first place.

Next Page ->

Acumen Journal: Acrobat User 4

Image Resampling

Resampling
Methods Resampling entails replacing

clusters of pixels in the
original data with single
pixels. The software that
does the resampling
(Acrobat, in our case) must
calculate a color for the replacement pixel that
will look like the overall color of the originals.

Acrobat gives us a choice of three methods by
which it can calculate the replacement color:
subsampling, linear downsampling,
and bicubic downsampling.

 We are going to see how each
of these works and see what
effect they each have on our
photograph. Specifically, we
shall zoom in on the lower-right corner of the image and see how the image changes
with each resampling type.

Next Page ->

Files on the Web Site

As usual, these images are
available on the Acumen
Training Resources page. Look
for the file Resampling.zip.

�

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User 5

Image Resampling

Subsampling This is the simplest method of resampling images;
Acrobat simply discards all of the pixels but one in
each cluster. The replacement pixel has exactly the
same color as one of the pixels in the original set.

Advantage The only advantage of this method of resampling is
that it is very fast, so it takes somewhat less time to
create the PDF file. Note that this has no effect on the
later viewing of the PDF file; it only speeds the creation of the file.

Disadvantage Subsampling has a seriously bad effect on the quality of the resulting image:

• Colors can change significantly, since the process completely discards the data in
the missing pixels.

• Edges become excessively “stairstepped,” reducing the smoothness of the image.

(We’ll see a comparison of the results of subsampling in just a moment.)

Next Page ->

�

Acumen Journal: Acrobat User 6

Image Resampling

Downsampling Downsampling calculates the color of the replacement
pixel from the colors of the original pixels. This yields
much better results, because all of the removed pixels
contribute to the color of the single replacement
pixel. This minimizes color shifting and retains the
appearance of sharp edges.

Acrobat can apply one of two different kinds of
downsampling to an image:

Average Downsampling Average Downsampling

Average downsampling calculates the color of the replacement pixel to be the
arithmetic average of the colors of the pixels in the original cluster. (Thus, the red
component of the replacement pixel is the sum of the red components of the original
pixels divided by the number of pixels in the cluster.)

Bicubic Downsampling Bicubic downsampling applies a more sophisticated algorithm to the pixels in the
original cluster; the resulting color of replacement pixel will closely match how the
eye would blend the original colors if they were seen from a distance. This yields a
new image that looks remarkably like the original. (This is the type of downsampling
that Adobe Photoshop applies when it resizes an image.)

Next Page ->

�

Acumen Journal: Acrobat User 7

Image Resampling

Comparisons Let’s return to our sample image. Below are four
close-ups taken from the lower-right corner of
the image. They are, from left to right:

• The original image.

• The image resampled to half its original
resolution using subsampling.

• The image resampled with average
downsampling.

• The image resampled with bicubic
downsampling.

To make it easier to see the differences among these, on the next page we have
scaled the subsampled images to 200%.

Next Page ->

Acumen Journal: Acrobat User 8

Image Resampling

A Detailed Look Here we have the same set of pictures, but we have zoomed to 200% on the
resampled images.

Looking at the three resampled images, we can note the following:

• The subsampled image (second from the left) is clearly the least acceptable of the
three resampled images. Compared to the other two, this image has a lot of very
ragged edges with accentuated stairstepping. The light blue, radial lines in the
blue dome have become a smeared, lightish blotch.

• The average downsampled image looks significantly better. The calculated
replacement colors provides something akin to anti-aliasing, smoothing out the
edges and giving us a better representation of the original detail. The gray roof
looks more uniform in color.

• The bicubic image looks remarkably like the average downsampled image. It is an
improvement, but only by a little. The light blue radial lines in the blue dome are more
distinct; the little blue-edged disks above the dome actually have some curvature.

Next Page ->

From Left to Right

Again, these are:

• Original
• Subsampled
• Average downsampled
• Bicubic downsampled

Acumen Journal: Acrobat User 9

Image Resampling

Distiller’s Controls In Acrobat Distiller, the controls that dictate
how—and if and when—images are resampled
reside among the PDF Settings, in the Images
panel. (This may be called the Compression
panel, depending upon your version of Acrobat.)

To get there, select Adobe PDF Settings
from Distiller’s Settings menu and then
click on the Images (or Compression)
tab in the resulting dialog box.

There are three sets of controls in this
panel, dictating the compression and
resampling of color, grayscale, and
monochrome images.

We discussed compression in the May
2002 issue of the Acumen Journal; I’ll
refer you to that issue if you want to
review compression.

Here we shall look at the resampling
controls.

Next Page ->

Acumen Journal: Acrobat User 10

Image Resampling

Overview The Distiller resampling controls
allow you to specify that images
whose effective resolution, after
scaling, are greater than some threshold value should be resampled to a specified,
lower resolution.

For example, the usual rule of thumb for images intended for print is that they should
be scanned at a resolution that is twice the halftone screen frequency of the printing
device. Thus, an image intended to be printed on an imagesetter with a screen frequency
of, say, 133 lines per inch would be scanned at about 260 dpi. Similarly, if you are
making a PDF file for printing on that same imagesetter, you could safely resample
any excessively-high-resolution images to the same 260 pixels per inch.

Distiller allows you to specify the values of three parameters that affect resampling:

• Threshold value - This is the maximum final resolution an image may have in this
document. Images with a resolution greater than this will be resampled. Images
with resolutions below this value will be untouched.

• Target resolution - This is the resolution you would like the final image to have. The
image will be resampled to something close to this target value.

• Type of resampling - The pop-up menu lets you select
among the three types of resampling we have discussed
(or no resampling at all).
 Next Page ->

Acumen Journal: Acrobat User 11

Image Resampling

Color & Grayscale
Recommendations The values you should specify for resampling color and grayscale images depend

upon the purpose you have in mind for the PDF document.

Printed Documents A document whose primary purpose is to be printed needs to retain enough image
data for the target printer. In particular, you should try to match the traditional printer’s
rule of thumb: the image’s resolution should be twice the halftone screen frequency
that will be used to render the document. This yields the following recommended
target resolutions:

• For typical 600 dpi laser printers: 200 dpi.

• For imagesetters: 300 dpi

Acrobat calculates a threshold value of about 1½ times the target resolution; I see no
reason to change this.

On-Screen Documents If the PDF file will be primarily read on a computer screen, then you should downs-
ample images to match the resolution of a typical computer monitor:

• For on-screen: 72 dpi

You may want to retain more data than this if you want to allow people to zoom in on
your images and see more detail.
 Next Page ->

Acumen Journal: Acrobat User 12

Image Resampling

Monochrome Images For 1-bit images (scanned line art
and such), you want to match the
resolution of the expected output
device or monitor:

• Laser printers: 600 dpi

• Imagesetters: 2400 dpi

• On-screen Display: 72 dpi

Again, I wouldn’t bother changing the threshold value; the default will server perfect-
ly well.

Anti-Alias to gray The Monochrome resampling controls include an additional pop-up menu that ask
if you want Distiller to convert the image to grayscale before resampling. I strongly
recommend this.

Monochrome images do not resample well. They become broken up and hopelessely
jagged. At right are the words “Acumen Training,” scanned at 300 dpi
and then downsampled by Distiller to 72 dpi. You’ll note that it doesn’t
look very good; I would not care to use this image as-is in any
professional document.

Next Page ->

Acumen Journal: Acrobat User 13

Image Resampling

The Anti-alias to gray menu allows you to have Distiller convert your monochrome
image to a grayscale image (that still initially has only blank and white pixels in it)
before downsampling. Grayscale images downsample well, as you can
see at right. This is the same 300 dpi monochrome image downsampled
by Distiller with the grayscale conversion turned on.

The pop-up menu gives you three choices for the grayscale
conversion: 2-, 4-, and 8-bit grayscale. The more bits per
pixel, the better the resulting downsampled image will look.
Practically speaking, I find that 4 bits per pixel is perfectly good;
the resulting downsampled image is indistinguishable from the
8-bit equivalent.

Next Page ->

Acumen Journal: Acrobat User 14

Image Resampling

Final Thoughts
Don’t overdo it Keep in mind that when you resample an image, the discarded data is permanently

gone. Don’t be too aggressive in your downsampling, since there is no way to replace
the excised data.

Resampling Can
Improve Image Quality Given the previous paragraph, it might seem reasonable to turn off resampling

entirely; just retain all of the image data. The reasoning is that by retaining all of the
data, the image will look as good as possible, even though the resulting PDF file will
be bigger than necessary.

Somewhat counterintuitively, this is not the case for a printed document; retaining all
of the original image data can result in a printed image looking worse than the resampled
image.

This will be true particularly if you are printing to a PostScript printer; if an image has
more data than a PostScript printer can use, the printer will subsample the data, resulting
in the loss of image quality we discussed above. If there’s too much data in an image,
then there’s too much data; the printer needs to handle the situation somehow.
PostScript chooses the method that is fastest (subsampling), rather than prettiest.

Having Distiller downsample your image data ahead of time yields better looking
images. (That said, the effect will be hard to see on most printers.)

Return to Main Menu

PostScript Tech

Acumen Journal: PostScript Tech 15

Handling Errors in PostScript, Part 1
What exactly happens when a PostScript error takes place? If you send the interpreter
a piece of code like:

 1 2 3 O’Leary

most PostScript devices will send an error message to the back channel (see sidebar).
Typically, this message consists of the name of the error and the offending command
(that is, the object that was being executed when the error occurred). Acrobat
Distiller also prints the contents of the operand stack:

 %%[Error: undefined; OffendingCommand: O’Leary]%%
 Stack:
 3
 2
 1

Doing it yourself Sometimes it would be useful to handle errors yourself, perhaps to report more
information about the error or to print the error message on paper.

This issue and next, we shall see how to override PostScript’s default error handling.

In this issue, we shall see how to gather and report more information about the error.
The next issue will discuss how to print the error message to the current page.

Next Page ->

What’s a “Back Channel”

The term “back channel” is
often used in PostScript to
refer to the %stdout output
file. This is a writeable virtual
file associated with the
currently active communi-
cation port.

Anything written to %stdout
(such as error messages)
will either be written back
to the computer that is the
source of the PostScript
stream or appear in the
interpreter’s log file, if it has
one.

Acumen Journal: PostScript Tech 16

Handling PostScript Errors, Part 1

Review: PostScript
Error Handling

Server Loop PostScript error handling is built upon the fact that the Server Loop executes your
PostScript job using the stopped operator.

The stopped Operator You should remember stopped from your PostScript class; it allows you to implement
something vaguely similar to other languages’ try and catch.

 -object- stopped => bool

This operator takes an executable file, string, or procedure body from the operand
stack and executes it. When that executable object returns, execution drops back to
the stopped operator, which returns a boolean on the stack.

This boolean will be false if the executable object ran all the way to the end without
a PostScript error. It will be true if the execution ended early because of a PostScript
error. (There is another operator, stop, that actually causes the break, but I’ll let you
look that up in your student notes.)

Next Page ->

Acumen Journal: PostScript Tech 17

Handling PostScript Errors, Part 1

Executing Your Job Here is a simple version of what the Server Loop does when it sees a PostScript
stream appearing at one of a device’s communication ports:

(%stdin) (r) file % Open a line to stdin
cvx stopped % Make it executable & execute it
{ errordict /handleerror get % If err: get handleerror...
 exec % ...and execute it
} if

Let’s look at this in detail (because we need to remember this thoroughly to see how
to modify it):

(%stdin) (r) file

Here the server loop opens the predefined file %stdin. This is a virtual, read-only file
associated with the currently active communication port. When your program reads
from %stdin, it actually reads data from your incoming PostScript stream.

Remember that the file operator returns on the operand stack a file object representing
the newly-opened file, in this case representing our active communication port.

cvx stopped

The cvx operator (“convert to executable”) makes the file object executable.

The stopped operator then executes the file object, that is, it moves the object to the
execution stack. (This file object becomes the PostScript job’s “input stream.”)
 Next Page ->

Acumen Journal: PostScript Tech 18

Handling PostScript Errors, Part 1

The stopped will return a boolean, true if there was a PostScript error. In this case,
execution will have dropped out of the PostScript stream, but the error will not yet
have been reported to the user.

{ ... } if

The if clause will be executed if stopped returns true, that is, if there was a PostScript
error.

errordict /handleerror get exec

Inside the if clause, the Server Loop fetches, from a predefined dictionary named
errordict, a procedure named handleerror; it then executes that procedure.

The errordict dictionary contains all of the procedures that are used by the PostScript
error handling mechanism. The handleerror procedure within that dictionary is the
error-reporting routine; this is the procedure that actually generates the error message
and sends it to the back channel.

$error The handleerror procedure must somehow determine the name of the error, the
offending command, and what was on the operand stack when the error took place.
It gets this information from another predefined dictionary, named $error.

The $error dictionary contains information about the most recent PostScript error. Its
seven key-value pairs supply an error reporting procedure everything that is to be
known about the error. Specifically, the contents of $error are as follows:

Next Page ->

Acumen Journal: PostScript Tech 19

Handling PostScript Errors, Part 1

errorname (name) The name of the PostScript
error. This will be one of the classic
PostScript error names, such as
typecheck or stackoverflow.

command (any object) The offending command.
Note that this is not the name of the
offending command, but the command,
itself. That is, if a call to moveto caused the error, the value of command will be the
operator object for moveto, not the name “moveto.”

ostack, dstack, estack (array) These three arrays contain the complete contents of the operand, dictionary,
and execution stacks as they were when the error took place. Element 0 of each array
was the bottom of the stack.

ErrorInfo (array) This array contains supplemental information regarding the error. What exactly
will appear in this array is hard to predict; it is frequently empty. Anything that does
appear in this array is worth examining, however.

newerror (Boolean) This Boolean value indicates the information in $error has not been
reported to the user. Handleerror checks this to make sure that an error has actually
occured and that it hasn’t been called by accident. Next Page ->

$error Contents

errorname name Name of the PostScript error
command any obj The offending command
ostack array Contents of operand stack
dstack array Contents of dictionary stack
estack array Contents of execution stack
ErrorInfo array Misc. error information
newerror bool Indicates new information

Acumen Journal: PostScript Tech 20

Handling PostScript Errors, Part 1

Writing Your Own
handleerror The most common reason for overriding PostScript’s default error handling mechanism

is to change how errors are reported, typically to either display more information
about the error or to print the error message on paper. The easiest way to do this is to
write your own handleerror procedure, defined in errordict:

errordict begin % Place errordict on the dictionary stack
/handleerror % Define a procedure named handleerror
{
 ... error handling stuff
} bind def
end % Remove errordict from the dict stack again

Now, when a PostScript error occurs and the Server Loop goes to errordict and
executes handleerror, it will get your handleerror, rather than the default.

By the time your handleerror is executed, $error will have been loaded up with
its information describing the error. You can do anything you wish to report this
information to the user.

Next Page ->

Acumen Journal: PostScript Tech 21

Handling PostScript Errors, Part 1

A Skeletal handleerror A typical definition of handleerror would look like this, in outline:

/handleerror
{
 $error begin % Move $error to the dict stack
 newerror { % Is neweerror true?
 ... % Yes: report error...
 error reporting stuff
 ...
 /newerror false def % ...and reset newerror
 } if
 end % Remove $error from the dict stack
} bind def
end

Step by step Here’s what the above skeleton does:

/handleerror
{
 $error begin % Move $error to the dict stack

Our handleerror will start by placing $error on the dictionary stack; PostScript will now
automatically search this dictionary, in addition to userdict, globaldict, and systemdict.

Next Page ->

Acumen Journal: PostScript Tech 22

Handling PostScript Errors, Part 1

newerror {
 ...
} if

We shall use the if operator to conditionally execute our error reporting code. We want
to report on the contents of $error only if newerror is true, indicating we have a new
error. (It is possible for the Server Loop to execute handleerror in circumstances other
than a PostScript error; our handleerror should not report these instances as an error.)

newerror {
 ...
 ... error reporting code goes here
 ...
 /newerror true def
} if

Presuming newerror is true, we shall report the error to the user, using the information
stored in $error. (We’ll look at an example of some error reporting code in a moment.)
One thing you must always do: set newerror to false when you are done reporting the
error. Now that the error has been reported to the user, it is by definition no longer a
new error.

 end
} bind def

Finally, our handleerror should finish by removing $error from the dictionary stack
with a call to end.

Next Page ->

Acumen Journal: PostScript Tech 23

Handling PostScript Errors, Part 1

A Distiller Annoyance Acrobat Distiller does something unexpected, given what we have just discussed: its
Server Loop calls a procedure named dhandleerror (presumably “Distiller handleerror”),
rather than handleerror. To allow for the case (common for me) where you are sending
your error handler to Distiller, you should include the following definition of dhandleerror
immediately after the definition of handleerror:

 /dhandleerror /handleerror load def

This will cause dhandleerror to call the same procedure as our handleerror.

A Basic Error Handler Let’s add some code that will actually emit an error message. The next page presents
a full, if simple, definition of handleerror, followed by some flawed PostScript code
whose resulting error we shall report.

Next Page ->

Acumen Journal: PostScript Tech 24

Handling PostScript Errors, Part 1

A Basic Error Handler errordict begin % Put errordict on the dict stack
/handleerror % Define handleerror:
{ $error begin % Put $error on the dict stack
 newerror { % Is neweerror true?
 (*** PostScript Error ***) = % Yes: emit error msg
 (Error:) print errorname = % Print error name
 (Offending command:) print /command load ==
 (Operand stack:) = % Print a label
 clear % Clear the operand stack
 ostack aload pop % Unload ostack
 count { % Start of repeat loop
 (\t) print == % Print item to %stdout
 } repeat % Repeat for each item
 flush % Flush %stdout
 /newerror false def % Reset newerror
 } if
 end % Remove $error from the dict stack
} bind def % End of handleerror definition

/dhandleerror /handleerror load def % accommodate Distiller
end % Remove errordict from dict stack
% Now let’s try the new error handler
1 2 /3 (O’Leary) moveto % moveto will yield a typecheck error
 Next Page ->

On the website

As usual, this file can be
found among the PostScript
examples on the Acumen
Training website’s resources
page. Look for the file
BasicErrorHandler.ps.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech 25

Handling PostScript Errors, Part 1

The execution of this program yields the following error message sent to stdout:

*** PostScript Error ***
Error: undefined
Offending command: --moveto--
Operand stack:
 (O’Leary)
 /3
 2
 1

The error reporting code makes use of three PostScript operators you may not have
encountered. (We don’t talk about them in most of the PostScript classes)

=, ==, and print Our handleerror uses three operators that emit text to stdout:

= The “equal” operator prints the value of the object on top of the operand
stack to %stdout; the object is removed from the operand stack. The text
sent to stdout is followed by a newline. Thus:

 (Howdy) =

 prints the text

 Howdy

 to %stdout.
 Next Page ->

Acumen Journal: PostScript Tech 26

Handling PostScript Errors, Part 1

== “Double-equal” prints the value of the topmost item to %stdout. It differs
from = in two ways:

 • It prints an indication of the nature of the data.

 • It can print the contents of arrays and procedure bodies.

 Like =, double-equal emits a newline to %stdout.

 For example,

 (Howdy) =

 prints the text

 (Howdy)

 to stdout. (Note the parentheses in the outuput, indicating this is a string.)

print The print operator takes a string (and only a string) as its argument, printing
the contents of that string to %stdout. Unlike the two equal operators,
print does not emit a newline.

 Thus,

 (The string is)print (Howdy) =

 prints the text

 The string is Howdy

 to %stdout. Next Page ->

Acumen Journal: PostScript Tech 27

Handling PostScript Errors, Part 1

Now let’s see how our handleeror uses these to generate an error message. Here’s our
definition with the parts we’ve already discussed grayed out:

/dhandleerror
{ $error begin
 newerror {
 (*** PostScript Error ***) =
 (Error:) print errorname =
 (Offending command:) print /command load ==
 (Operand stack:) =
 clear
 ostack aload pop
 count {
 (\t) print ==
 } repeat
 flush
 /newerror false def
 } if
 end
} bind def

Step by Step (*** PostScript Error ***) =

We begin by printing an alert line; this simply catches the user’s eye and, we hope,
makes them immediately aware that there has been an error. Next Page ->

Acumen Journal: PostScript Tech 28

Handling PostScript Errors, Part 1

(Error:) print errorname =

We print the label “Error:” followed by the value of the errorname entry in $error.
(Remember that $error is on the dictionary stack at this point, so we have access to all
of its key-value pairs by simply referring to their keys.)

(Offending command:) print /command load ==

Now we print the offending command. Note that in this case we do not just refer to
command, but instead do an explicite load on that name. We need to do this because
the command entry in $error will be associated with whatever object was being executed
when the error took place. In our example, the offending command will be the operator
object that implements moveto; if we simply invoked the name command, the interpreter
would immediately execute the moveto operator, giving us another error. (Come to
think of it, that would recursively call our new handleerror.)

The load operator will place the offending command on the operand stack and then
we can let the double-equal operator display it. (Happily, double-equal does the
appropriate name lookup on operator definitions.)

(Operand stack:) =
clear
ostack aload pop

Now we are going to print the contents of the ostack array. We begin by clearing the
operand stack and then unloading the contents of ostack onto the operand stack. We
do this with another operator you may not have encountered: aload.

Next Page ->

Acumen Journal: PostScript Tech 29

Handling PostScript Errors, Part 1

 [obj0 obj1 ...] aload => obj0 obj1 ... [array]

The aload operator takes an array as its argument and “unpacks” it on the operand
stack; precisely, it places all of the contents of that array on the stack and then pushes
the array itself back onto the stack.

In our code, I had no use for this copy of the array, so I just popped it off.

count {

We are now going to print each of the items we just placed on the operand stack. We
shall use a repeat loop to do this, executing count to determine how many times our
loop must repeat. (Remember count returns on the stack the number of items on the
stack.)

 (\t) print ==
} repeat

For each item in the loop, I do two things:

• Print a tab to %stdout.

• Print the object on top of the stack with == (which removes the object from the stack).

flush

Finally, we execute flush. This operator flushes the output buffer associated with
%stdout, ensuring that the text we have been writing actually makes it to the log file
or host computer.

Next Page ->

Acumen Journal: PostScript Tech 30

Handling PostScript Errors, Part 1

Whew! At this point, we have an error handler that behaves like Distiller’s default error handler:
it reports the error’s name, the offending command, and the contents of the operand
stack.

Now what? In the next issue, we shall add to our error handler, printing the contents of the
dictionary stack and the ErrorInfo array. We’ll also see how to print all of this stuff to
an error page, accommodating systems that don’t receive error messages back from
the printer.

See you next time.

Return to Main Menu

Schedule of Classes, April – July 2005
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class
on the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

PDF File Content
and Structure

Apr 18–21

PostScript
Foundations July 18–22

Variable Data
PostScript

Advanced
PostScript

PostScript for
Support Engineers May 23–27

Jaws Development On-site only

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate
sites. Clicking on a course name below will take you to the class description on the
Acumen Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
organization sign up for the same class.

 Registration ->

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

New PDF Class Nothing new this month. I am laying out and researching topics for the second PDF
File Content and Structure class. I am expecting to teach the first class in late
September. The topic list is below; as before, if you think something should be added
to or dropped from this list, send an email to john@acumentraining.com.

Preliminary Topic List Overprinting File Spec Patterns
CID Fonts Masked Images Composite Fonts
Halftones Digital Signatures Linearized PDF
Marked Content AcroForm Stroke Adjustment
Rendering Intents Transfer Functions Halftones
Smooth shading Shape dictionaries Text Knockout
Reference XObjects Layers Object streams
Cross reference streams Name Dictionaries More on data structures
BX & EX Return to First Page

What’s New?

Acumen Journal: What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you
remember fondly your last root canal?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal: Acrobat User 36

Distiller Image Settings

	btnHome:
	btnPrevPage:
	btnNextPg:

