
Table of Contents

The Acrobat User Filling Out Paper Forms with the Acrobat X Typewriter Tool (on Peachpit.com)
The Typewriter tool is one of my favorite tools (of quite long standing) in the Acrobat gizmo box. You can
use this to fill out those annoying scanned paper forms that the doctors, lawyers, and other professional
folks in your life email to you and ask you to “fax it back.” Fax it back? How quaint!

PostScript Tech Fitting Text to a Specified Width
This comes up periodically for me: I need to print a piece of text in such a way that it exactly fits across a
specific width (inside a box, perhaps). Let’s see how to do this.

PDF Nuggets Informational nuggets about the PDF file format.

Class Schedule Apr–May–Jun

What’s New? Acrobat X Visual Quickstart Guide

The book is done and out now. You can order it at Amazon.com! Buy several!

Contacting Acumen Telephone number, email address, postal address

Acumen Journal, Issue 61 © 2011 John Deubert, Acumen Training			�

John Deubert’s Acumen Journal, March 2011

Journal feedback: suggestions for articles, questions, etc.

1.1

http://www.amazon.com/gp/product/032174375X/ref=as_li_tf_tl?ie=UTF8&tag=acumetrain-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=032174375X

PostScript Tech

Acumen Journal: PostScript Tech		 2

Fitting Text to a Specified Width
At right is a situation that comes up more often that you’d think: I need to print a multi-line gob of text
within a fixed area; I would like each line of text to extend across this region, as below.

There are two ways of doing this:

•	 I can kern the text, offsetting each character in each line by a calculated
amount so the line fits across the required space, as at right.

•	 I can calculate a horizontal scale value, condensing each line’s text so it fits
across the required space, as below right.

Although I can do this as a one-off for a specific PostScript file, the situation
comes up often enough that I long ago automated the task, writing two
PostScript procedures that print the text automatically:

•	 ShowKernedToWidth prints the text kerned to the proper total width.

•	 ShowScaledToWidth prints the text horizontally scaled to the proper width.

This month, I share the Inner Mysteries of these procedures.

PostScript
and PDF
PostScript
and PDF

Sample Files

As usual, the sample files
for this month’s article are
available on the Acumen
Training Resources page.
Look for the file FitText.zip.

http://www.acumentraining.com/Resources.html

Acumen Journal: PostScript Tech		 3

Fitting Text to a Specified Width

Kern-to-Fit Let’s start with the kern-to-fit algorithm. We want to fit a piece of
text, with some intrinsic width, into a particular space. With the
kern-to-fit algorithm, we’ll calculate the difference between the
space’s width and the string’s width and distribute the difference
between all the string’s characters. The characters will print closer
together or farther apart than they would normally be, just enough
so the string exactly spans the available space.

At right, for example, the string “PostScript” exceeds the width of
the rectangle by the indicated amount. We shall need to remove enough space between each pair of
characters within the string so it squeezes successfully into the box.

ShowKernedToWidth We are going to define a procedure named ShowKernedToWidth that takes the following arguments:

	 (str) width ShowKernedToWidth

These arguments are the string we want to print and the width to which we want to force the string. The
procedure prints the string at the current point, kerning the text so it has a total length as specified.

The procedure will ultimately call the PostScript ashow operator:

	 ax ay (str) ashow

This operator takes an x and y offset and a string; it prints each character in the string, offsetting the next char-
acter by the specified amounts in x and y. Our y offset will always be zero, since our text prints horizontally.

Our ShowKernedToWidth procedure will do the following:

1.	 Determine the length of the string (using the stringwidth operator).

2.	 Subtract this actual string width from the desired width. The difference is the amount by which we

PostScript
PostScript

Acumen Journal: PostScript Tech		 4

Fitting Text to a Specified Width

need to increase or decrease the length of the string.

2.	 Divide this difference by the number of characters in the string minus one (which is the number of
inter-character spaces in the string). This is the kern amount, the distance we need to offset each
character, the ax argument for ashow.

3.	 Call ashow.

Let’s look at the procedure definition.

The Definition Here’s a snip of PostScript that defines the ShowKernedToWidth procedure and then uses it to print a pair
of strings in a 175-point-wide rectangle.

/ShowKernedToWidth			 % (str) width ⇒ ---
{	 1 index stringwidth pop	 % ⇒ (str) wid strwid	 Calculate the width of the str
	 sub						 % ⇒ (str) kern			 Subtract from the total width
	 1 index length 1 sub		 % ⇒ (str) kern count	 Count the number of chars – 1
	 dup 0 eq					 % ⇒ (str) kern count bool Is number of spaces zero?
	 { pop pop show }			 %					 Yes: print the string as-is
	 { div 0 3 -1 roll ashow } % 					 No: assemble the ashow call
	 ifelse
} bind def

/Helvetica 50 selectfont			 % Now let’s use the procedure

.5 1 .8 setrgbcolor				 % Draw a rectangle
[100 600 175 100] dup rectfill
1 .5 .5 setrgbcolor
rectstroke

Acumen Journal: PostScript Tech		 5

Fitting Text to a Specified Width

0 setgray						 % Print “Acumen” and “Training”
100 655 moveto					 % kerned to the rectangle’s width
(Acumen) 175 ShowKernedToWidth
100 615 moveto
(Training) 175 ShowKernedToWidth

showpage

Let’s step through the procedure definition in detail.

Step-by-Step /ShowKernedToWidth			 % (str) width ⇒ ---
{	 1 index stringwidth pop	 % ⇒ (str) wid strwid	 Calculate the width of str

The procedure starts by copying the string to the top of the stack and obtaining its printed width with the
stringwidth operator. Remember that stringwidth returns both an x and a y width; we have no use for the
latter, so we discard it with a pop.

sub						 % ⇒ (str) whitespace

We then subtract the width of the string from the desired width; this difference is the amount of
whitespace that will be left at the end of the line if we were to print the string at its “natural” width. We
want to distribute this whitespace between the characters in the string.

1 index length 1 sub		 % ⇒ (str) kern count

Copying the string to the top of the stack, we then find its length (that is, the number of characters it
contains) and subtract 1 from that number; this is the number of inter-character positions in the string.

dup 0 eq					 % ⇒ (str) kern count bool
{ pop pop show }

We need to check whether the number of inter-character positions is zero; if so, we’ll just discard our
calculations and print the string as-is.

Acumen Journal: PostScript Tech		 6

Fitting Text to a Specified Width

{ div 0 3 -1 roll ashow }
ifelse

If the number of inter-character positions isn’t zero, we’ll do some rearranging of the stack and then call
the ashow operator.

And that’s the end of the procedure; relatively simple, eh?

Note that the kerning technique works regardless of whether we need to
tighten or loosen the text spacing, though it works least well at the extremes,
as illustrated at right. You get the best results with this technique when the
lines of text need only minor adjusting.

The advantage of this technique is that it doesn’t distort the character shapes; it
affects only the character spacing.

Scale to Fit The alternative method of fitting text to a specified area is to scale the
text—horizontally—so that it fits as needed. Using this technique, the text
sample above finishes up looking as at right.

Well, no, it isn’t pretty. But it is more readable than the kerned version and this
is the technique’s benefit: characters distort, but they remain distinct.

ShowScaledToWidth Our ShowScaledToWidth procedure will take the same arguments as our earlier
procedure:

	 (str) width ShowScaledToWidth

As before, we pass the string we want to print and the width to which we want to fit that string. We are going
to temporarily change the font to a horizontally scaled version of the current font, using the makefont operator.

This
is
way too long!

T h i s
i s
way too long!

Acumen Journal: PostScript Tech		 7

Fitting Text to a Specified Width

You remember makefont, of course:

	 fontdict [sx 0 0 sy 0 0] makefont => fontdict2

In the above line, sx and sy are the x and y scale we want for the new font. Note that makefont needs to be
followed by a setfont before we can use the newly-scaled font.

ShowScaledToWidth will do the following:

1.	 Determine the length of the string (using the stringwidth
operator); this is the long arrow in the diagram at right.

2.	 Divide this value into the space available for the string (the short
arrow at right). The resulting value is the horizontal scale we
need to make the string fit the proper space.

2.	 Assemble a six-element array—a transformation matrix—that
looks like the following:

	 [hscale 0 0 1 0 0]

3.	 Use this array in a call to makefont.

Since the procedure changes the current font, it will need to explicitly reset the font to what it was before
the procedure was called. (This is easily done with a gsave and grestore.)

PostScript
PostScript

Acumen Journal: PostScript Tech		 8

Fitting Text to a Specified Width

The Definition Our ShowScaledToWidth procedure is defined as follows:

/ShowScaledToWidth	 % (str) width => ---
{	 gsave					 % Save the graphics state
	 1 index stringwidth pop	 % ⇒ (str) wid strwid	 Calculate the width of str
	 div						 % ⇒ (str) hscale		 Calc. the needed horiz. scale
	 [exch 0 0 1 0 0]		 % ⇒ (str) [...]		 Assemble the makefont array
	 currentfont exch makefont setfont	 % ⇒ (str)		 Set the font to our scaled font
	 show						 % ⇒ ---				 Print the string
	 currentpoint				 % ⇒ x y				 Push current point on stack
	 grestore					 % ⇒ x y				 Restore original font
	 moveto					 % ⇒ ---				 Pos. current point to end of str
} bind def

Let’s look at it in detail.

Step by step gsave

The procedure makes an initial call to gsave. This allows us to restore the font that is current at the time
the procedure is called.

1 index stringwidth pop	 % ⇒ (str) wid strwid

As before, we use the stringwidth operator to determine the printed width of the string, throwing away
the unneeded y return value.

div						 % ⇒ (str) hscale

We divide the string’s actual width into the desired width, yielding the horizontal scale value we must
apply to the current font. This will be the first element of the array we hand to makefont.

Acumen Journal: PostScript Tech		 9

Fitting Text to a Specified Width

[exch 0 0 1 0 0]		 % ⇒ (str) [...]

This line constructs the makefont array. This takes a bit of explanation.

Remember that the open-square-bracket character is a PostScript operator that leaves a mark object on
the operand stack. The above line starts with the horizontal scale on the stack; we push a mark on the
stack—starting an array construction—and then execute an exch, dropping the mark to the bottom of
the stack and pushing the scale value on top of it. We then pile five constant values (0’s and 1’s) on the
stack and close the array with the close bracket. The final array has the value[hscale 0 0 1 0 0].

currentfont exch makefont setfont	 % ⇒ (str)

We push the currentfont on the stack, reverse the font dictionary and array,
hand the pair to makefont and give the resulting transformed font to setfont.
Our current font is now a horizontally scaled version of whatever font was
current when we executed our procedure.

show

Now we can print our string, which the earlier code left sitting on top of the stack.

currentpoint
grestore
moveto

Finally, we clean up after ourselves.

I wanted ShowScaledToWidth to move the current point to the end of the printed string, just as show
does. To this end, we need to push the current point’s position onto the operand stack with a call to the
currentpoint operator. We can then do our grestore, which sets the current font back to its original value
(and, as a side effect, returns the current point to the beginning of the string), followed by a moveto, that
restores the current point to the x and y coordinates sitting on the stack, that is, the end of the string.

This
is
way too long!

Acumen Journal: PostScript Tech		 10

Fitting Text to a Specified Width

That’s all there is to it. Call the procedure, passing a string and a width

	 (way too long) 175 ShowScaledToWidth

and the text will be printed, scaled horizontally as needed to fill the specified length.

Acumen Journal: Acrobat User	 11

Acrobat User

Peachpit Press: Filling Out Paper Forms with the Typewriter Tool
This month’s Acrobat article is on-line at Peachpit.com.

You may not be aware that Peachpit Press has a large collection of very informative articles on their web
site. (I wasn’t until they asked me to write a couple articles for it.) It’s a rich source of information on things
technical for creative professionals. There are articles, blogs, and (for-sale) eBooks on a wide variety of
topics, from digital photography to electronic design to web development.

There will also be some articles on Acrobat X use; that would be me.

This month’s article on the site is:

Filling Out Paper Forms With the Acrobat Typewriter Tool
The Typewriter tool is one of my favorite
tools (of quite long standing) in the Acrobat
gizmo box. You can use this to fill out those
annoying scanned paper forms that the
doctors, lawyers, and other professional folks
in your life email to you and ask you to fax it back.

“Fax it back?” How quaint!

Better to fill it out with the Typewriter tool!

Below is an excerpt from the article; you can read the whole thing by following this link. While you’re
there, be sure to wander around among the rest of the Peachpit articles. There’s a lot of interesting stuff
just sitting there for the reading.

In fact, by the time you read this, there’s probably a second Acrobat article posted.

One Time Only

This is the only time that
the Journal will send you to
Peachpit.com.

The next Journal will have
it’s own, independent
article, as usual.

http://www.peachpit.com/articles/article.aspx?p=1684783
http://www.peachpit.com/articles/index.aspx

Acumen Journal: Acrobat User		 12

Filling Out Paper Forms

Filling Out Paper Forms with the Typewriter Tool (Excerpt)

I’ll bet this has happened to you.

So, last night I had a dream involving
penguins, escalators, and a dentist.
Wondering what it all meant, I searched the
Web and found a clinic near my home that
specializes in dream interpretation. After a
brief telephone conversation, they emailed
me a New Patient Questionnaire (Figure 1),
with instructions to “print it, fill it out, and
fax it back.” I emphasize this was not an
interactive pdf form; it was a paper form they
had scanned (or maybe laid out in Microsoft
Word) and saved as pdf.

Now, I got rid of my fax machine about the
time I sold off my 300 baud modem. I don’t
fax. I also don’t fill things out by hand if I can help it; my handwriting has baffled the finest government
cryptographers, so what chance does a clinic desk clerk have?

In the really old days (back when I was still using that 300 baud modem), I would have taken the paper
form, rolled it into my trusty typewriter (remember those?), and then typed my name and address and put
little typewritten x’s in the appropriate checkboxes.

So what do I do in this modern, improved era, when owning a typewriter is at best a mild eccentricity?

Well, you use the Acrobat X Typewriter tool, is what you do.

Figure 1. A paper form sent to me as a pdf file that I need to fill in and
“fax” back.

Acumen Journal: Acrobat User		 13

Filling Out Paper Forms

The Typewriter Tool The Typewriter tool is, in its modest way, one of the handiest gizmos in the
Acrobat X toolbox. With it, you can place pieces of text on top of any pdf
page for any purpose. In my case, I wanted to fill in the pdf-format paper
form sent to me by the dream clinic.

The Typewriter tool lives in the Content panel of the Tools pane with the title
“Add or Edit Text Box” (Figure 2). When you select this tool, Acrobat displays
the Typewriter palette, which rides on top of your other Acrobat windows
(Figure 3).

End of Excerpt Thus endeth the excerpt. Again, go here to read the whole thing.
Figure 2. The “Add or Edit Text Box”
tool is in the Content panel of the
Tools Pane.

Figure 3. The Typewriter palette contains the tools we’ll use in this article. Note that
it floats above the other Acrobat windows.

http://www.peachpit.com/articles/article.aspx?p=1684783

Acumen Journal: PDF Nuggets		 14

PDF Nuggets

PDF Nuggets

PDF Pages
Among the many ways in which pdf is different from PostScript is that pdf is not sequential; that is, the
contents of a pdf file do not reside in the file in page order.

In PostScript, all of page 1’s stuff comes first, followed by page 2’s code, and so forth for the entire document.
The benefit of this organization is that a PostScript interpreter can consume the file incrementally. It can
read a bit of PostScript code, process it, read some more, repeating until it has finished the entire file. In
particular, it doesn’t need to store the entire PostScript stream in order to render the entire document.

On the other hand, it makes it more tedious to read the PostScript file in any order other than page order.
Rearranging or extracting pages is notoriously difficult.

PDF, on the other hand, stores its pages in a tree structure, as at right.
A page’s drawing commands, fonts, and other resources may be scat-
tered throughout the pdf file. The pdf file provides a directory to
where each page’s entry point is located (as well as where to find each
resource required by that page).

This has the reverse set of benefits and problems. Accessing arbitrary
locations within the pdf file (as when you click on a link in Acrobat) is
very easy. On the other hand, if a printer wants to consume a pdf file
directly, it must collect and store the entire file (on an internal hard
disk, perhaps) before it can begin printing any part of it.

Having enough storage of some sort or other is one of the design
requirements for printers that want to print pdf files directly. Happily, that is not too hard to achieve these
days, since ram and hard disks are both relatively cheap.

Node
(/Pages)

NodePage 2Page 1

Page 4Page 3

Acumen Journal: PostScript Tech		 15

Class Schedule

Schedule of Classes, April 2011– June 2011

At right are the dates of Acumen
Training’s upcoming classes.
Clicking on a class name will take
you to the description of that class
on the Acumen Training website.

O.C. and On-Site These classes are taught in Orange
County, California and on-site at
corporate sites world-wide.

Please see the Acumen Training
web site for more information,
including an up-to-date schedule.

Class Fee Classes cost $2,000 per student,
with the following exceptions:

•	 XPS class $1,500
•	 Troubleshooting PostScript $1,500
•	 Support Engineers’ PDF $1,000

There is a 10% discount for signing up three or more students.

Note that if you have four or more students that need to take a class, it will almost certainly be cheaper to
arrange an on-site class.

PDF Classes
PDF 1: File Content

and Structure May 2–5 Jun 27–30

PDF 2: Advanced File
Content

Support Engineers’ PDF May 19–20

PostScript Classes

PostScript Foundations Apr 4–8 May 23–27

Advanced PostScript

Variable Data PostScript May 30–Jun 3

Troubleshooting
PostScript May 16-18

XPS Classes
XPS File Content

and Structure Apr 18–20

http://www.acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/Descr_SEPDF.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/descr_xps1.html
http://www.acumentraining.com/descr_xps1.html

Acumen Journal: PostScript Tech		 16

Contacting John

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: www.acumentraining.com/register.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

On-Site Classes Information regarding classes on corporate sites is available at www.acumentraining.com/Onsite.html.
These courses are taught throughout the world; for additional information on classes outside the United
States, go to www.acumentraining.com/OnsitesWorldWide.html.

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/Register.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/OnsitesWorldWide.html
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 17

What’s New

What’s New at Acumen Training?

Acrobat X Visual
Quickstart Guide I’m sorry that the Acumen Journal is so long in coming.

It’s been a busy six months. However, all the other
projects are done and, in particular, the Acrobat X Visual
Quickstart Guide is now on your local (and electronic)
bookshelves.

Buy one for each of your kids!

A Paper Form

	Go Next Page 11:
	Go Next Page Bottom 10:
	Go Next Page:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:

	Go Next Page Bottom:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:

	Go Home:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:

	Go Prev Page:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:

	Go Next Page 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:

	Go Home 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:

	Go Prev Page 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:

	Go Next Page 3:
	Page 11: Off

	Go Home 3:
	Page 11: Off

	Go Prev Page 3:
	Page 11: Off

	Go Next Page Bottom 2:
	Page 11: Off

	Go Next Page 4:
	Page 12: Off
	Page 13:

	Go Home 4:
	Page 12: Off
	Page 13:

	Go Prev Page 4:
	Page 12: Off
	Page 13:

	Go Next Page Bottom 3:
	Page 12: Off
	Page 13:

	Zoom In Button 3:
	Go Next Page 5:
	Go Home 9:
	Go Prev Page 5:
	Go Next Page Bottom 4:
	Go Next Page 7:
	Go Home 11:
	Go Prev Page 7:
	Go Next Page Bottom 6:
	Go Next Page 8:
	Go Home 12:
	Go Prev Page 8:
	Go Next Page Bottom 7:
	Go Next Page 9:
	Go Home 13:
	Go Prev Page 9:
	Go Home 5:
	Page 18: Off

	Go Prev view:
	Page 18: Off

	Zoom Out Button 1:

