
Table of Contents

The Acrobat User The JavaScript Date Object
The Date object allows your JavaScripts to determine and display the current date, as well as to perform some date-related
arithmetic.

PostScript Tech Miscellany
Some miscellany this month. I wanted to discuss three useful PostScript commands and features that are often overlooked even
by relatively experienced PostScript programmers.

Class Schedule May-June-July

What’s New? JavaScript e-book; expanded consulting; new web design. I’ve been busy!
The JavaScript e-book is finally out (and about time!). I’m expanding my PostScript
consulting services. And I’ve redesigned the Acumen Training website. It beats being bored.

Contacting Acumen Telephone number, email address, postal address

Acumen Journal, Issue 64 © 2012 John Deubert, Acumen Training			�

John Deubert’s Acumen Journal, May 2012

Journal feedback: suggestions for articles, questions, etc.

1.2

Acumen Journal: PostScript Tech		 2

PostScript Tech

Acumen Journal: PostScript Tech		 2

Miscellany
This month, I thought I’d present some this-and-that topics that I’ve long wanted to talk about, but that aren’t individually meaty
enough to make up an article. So, three topics today:

•	 Using integers and other non-names as dictionary keys.

•	 Using radix notation to specify integer constants.

•	 Using packed arrays.

These are all very long-standing features of PostScript, the first two dating back to Level 1. Still, a surprising number of experi-
enced PostScript programmers don’t know about one or more of these or have forgotten and never use them.

So, let’s introduce these features to some people and jog the memories of the rest.

Non-Names as
Dictionary Keys It comes as a surprise to many people that PostScript dictionary keys don’t have to be names. In nearly all instances, a name

object is the sensible thing to use as a key in a PostScript dictionary:

/MyDict	<<
	 /x	 27		 % The keys /x & /y are names
	 /y	 18
>> def

However, sometimes you want to associate a value with some key other than a name; for example, I’ve had one client who
needed to associate values with integers; he started out using names, something like this:

/NumDict	 <<
	 /1	 (One)
	 /2	 (Two)
>> def

Acumen Journal: PostScript Tech		 3

This’s and Thats
Again, the keys here are names: /1, /2, etc. He fetched values from this dictionary using code similar to this (which assumes x is
an integer):

NumDict x () cvs cvn get

He could have simplified his code by using integers as keys:

/NumDict	 <<
	 1	 (One)
	 2	 (Two)
>> def

Now the keys here are the actual integers and their associated values can be looked up with simpler code:

NumDict x get

There is no restriction on what kind of PostScript object may be used as a key. My favorite illustration of this was created many years
ago by a PostScript Foundations student in, of all places, Scarborough, U.K. He needed to replace several operator definitions
with PostScript procedures, but only if the operator had not already been replaced (this was a real possibility in his situation). So,
immediately in class after we discussed non-name keys, he created a dictionary whose keys were operator definitions.

Now, that was just cool!

/OperatorDicts	 <<
	 systemdict /showpage get {...showpage replacement code...}
	 systemdict /show get {...show replacement code...}
	 systemdict /setlinewidth get {...setlinewidth replacement code...}
>> def

Acumen Journal: PostScript Tech		 4

This’s and Thats
He could then conditionally replace the operator definitions thusly:

OperatorDicts		 % Push the dictionary on the stack
/showpage load		 % Get the current definition of showpage (or whatever)
2 copy known		 % Does the showpage definition exist as a key in OperatorDicts?
{ get /showpage exch def }	 % Yes: redefine showpage
{ pop pop }					 % No: throw away the dictionary and key
ifelse

It was from this pretty easy to use forall to traverse systemdict and replace all the operators that had not already been redefined.

Very fun!

Radix Notation It happens not too infrequently that you want to refer to a hexadecimal value in your PostScript code (perhaps mapping 1-byte
color values into PostScript 0-1 values). Usually, we end up converting the hex values ahead of time into decimal values and
using those:

212 72 186 sethexrgbcolor

This is perfectly fine; no real complaints. Still, sometimes it’d be convenient—for readability, if nothing else—if we could use in
our PostScript code the actual hex values we’d looked up in a book somewhere. Well, we can:

16#D4 16#48 16#BA sethexrgbcolor

You can infer the format here, I’m sure:

	 base#value

The number base can be any decimal integer value 2-36; the values are expressed using characters 0–9 and a-z (case-insensitive),
as appropriate to the base.

Acumen Journal: PostScript Tech		 5

This’s and Thats
This is purely a convenience and has absolutely no effect on the actual integers used in the execution of your code; that is, the
following two lines yield exactly the same result:

100 200 moveto
8#144 8#310 moveto

Radix notation is for the visual convenience of the programmer only.

Packed Arrays Finally, here’s a minor memory saver: packed arrays.

A packed array is just like a regular array, except:

■	 It’s read-only.

■	 It takes up substantially less vm than a regular array.

Packed arrays are useful in situations where the amount of vm is chronically low; it can help reduce the incidence of vm errors
and avoid provoking garbage collection quite so often.

Creating Packed Arrays PostScript maintains a “packing” parameter that determines whether arrays are created as packed or not; it defaults to false, of
course, so the arrays you usually create will be normal, unpacked, writable arrays.

If you set the packing parameter to true using the setpacking operator, then all arrays will be created as packed arrays until
you turn the parameter to false again.

true setpacking
/myArray [(This is) (a packed) (array.)] def
false setpacking

I’ve been doing a bit of nosing around with vmstatus and, by and large, packed arrays seem to be 20%-30% smaller than
regular arrays. Not a huge savings in a world of cheap and plentiful ram, but worth doing if you have memory issues in your
PostScript environment.

Acumen Journal: PostScript Tech		 6

This’s and Thats

Why would I use this? You might be saying to yourself, “I don’t generally use much in the way of read-only arrays, so does this buy me?”

Well, remember that procedure bodies are actually executable arrays. You can reduce the memory footprint of your PostScript
prolog by defining all of your procedures with the packing parameter set to true:

%%BeginProlog
true setpacking
/bd { bind def } bind def
/inch { 72 mul } bd
/rshow { dup stringwidth pop neg 0 rmoveto show } bd
... lots more procedure definitions
false setpacking
%%EndProlog

In the above snippet, all of the procedures are created as packed executable arrays.

A Fly in the Farina There is one, usually minor, problem associated with packed arrays: they are slower than regular arrays. The difference in
speed is miniscule if the array is accessed sequentially (first using element 0, then element 1, etc.), as is the case with procedure
definitions. Random access, however, is very much slower than non-packed arrays. I haven’t been able to hunt up (or measure)
any reliable timings of packed vs. non-packed arrays, so we’ll just need to take Adobe’s word for it.

Acumen Journal: PostScript Tech		 7

Acrobat User

Displaying the Current Date with JavaScript
My new Acrobat JavaScript e-book (Beginning JavaScript for Adobe Acrobat) is finally finished and available for purchase, so
I thought I’d celebrate with a series of JavaScript articles over the next couple of Acumen Journal issues. (See the What’s New
page for more information on the e-book.)

This month we’re going to use the JavaScript Date object to implement an
automatically-updating “Current Date” field (such as the one at right) in an Acrobat form.

This article is intended as supplementary reading for people who have read Beginning JavaScript,
so I’ll be assuming that you know (or, at least, once knew) the basics of JavaScript programming
and how to attach a script to a form field or a page. If you don’t know this, I’ll be reviewing it
briefly as we go, but not in any great detail at all.

Have I mentioned you’ll find the book useful?

The Date object, by the way, is standard JavaScript; it isn’t a feature specific to Adobe Acrobat. You can use this object in any
JavaScript environment, including web pages.

The Project Our sample project for this article is built around the pdf file pictured
in Figure 1. This one-page document contains a single, locked text field
named txtDate (Figure 2). Because the field is locked, it will appear to
the user as static text, not editable by simply clicking on it.

We are going to attach a Page JavaScript to
this document’s single page that will set the
value of the text field to the current date so
that whenever a user opens the document

The Full Scoop

This article presents a light
introduction to the JavaScript Date
object. Complete documentation is
on the Mozilla Developer website.

Click here.

The Sample File

As always, the sample file for this
article can be downloaded from
the Acumen Training Resources
page; look for DateObject.pdf.

Figure 1. We are going to
attach a JavaScript to this page
that sets the yellow text field’s

value to the current date.

Figure 2. Our page has a single
text box named txtDate.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date
http://www.acumentraining.com/Resources.html

Acumen Journal: PostScript Tech		 8

The JavaScript Date Object

(and therefore opens the page), he or she will see the current date in the box. It’s a very simple JavaScript that will give us a
chance to do some initial exploration of the Date object.

Page JavaScripts:
a Review As I said, we are going to attach a Page JavaScript to the document. You no doubt remember

(yes you do!) that a Page JavaScript is executed whenever the user goes to a particular page
in the pdf document. You attach a script to a document’s page through the Page Thumbnails
navigation panel.

Here’s a reminder of the procedure:

1	 In the Page Thumbnails navigation pane, right-click on the page to which you want to attach
the JavaScript and select Page Properties from the resulting contextual menu (Figure 3).

	 Acrobat will display the Page Properties dialog box (Figure 4).

2	 In the Actions panel (shown in Figure 3), select Page Open in the
Select Trigger pop-up menu and select Run a JavaScript in the
Select Action pop-up menu.

3	 Click the Add button.

	 Acrobat will present you with the JavaScript Editor window (Figure 5).

4	 Type your JavaScript into the text field.

5	 Close all windows and dialog
boxes until you are back at the
pdf document window.

That’s it; the JavaScript you typed
in will execute every time Acrobat
opens that page.

Figure 3. You attach a JavaScript to a
page through the page’s Properties.

Figure 4. We’ll attach
a JavaScript to the
Page Open event.

Figure 5. Type the JavaScript code into
the JavaScript Editor window.

Acumen Journal: PostScript Tech		 9

The JavaScript Date Object

The Code Our page JavaScript is a simple little thing that gets the current date and then sets the value of the text field:

var dt = new Date()
var fld = this.getField("txtDate")

fld.value = dt.toDateString()

Let’s look at it in detail.

Step by Step var dt = new Date()

Here we are getting a Date object and assigning it to the variable dt.

The JavaScript new command, you may recall, creates an instance of a class, in this case the Date class. Note that we are passing
no arguments when we create the Date object; the parentheses are empty. When we do this, the newly created Date object
will be initialized with the current date and time. There are other possibilities; we could have initialized the Date object with a
particular date by passing that date as a string:

var dt = new Date("February 11, 1997")

There are a few other options you could exercise, as well, but I’ll let you look those up in the on-line documentation.

var fld = this.getField("txtDate")

You saw this line a lot in the JavaScript book; we are getting a reference to the field txtDate and assigning it to the variable fld.
Remember that this here refers to the current document.

Acumen Journal: PostScript Tech		 10

The JavaScript Date Object

fld.value = dt.toDateString()

Here is the line that does the visible work. We set the value of the text
field to a string representation of the date using the Date object’s
toDateString method. The result is that our pdf page looks like
Figure 6.

The toDateString method returns a string for the Date object’s
entire value, including the time of day. Given the other text on the
page, we probably want only the date. We can fix this most easily by
using the toLocaleDateString method:

fld.value = dt.toLocaleDateString()

This method returns a string version of the Date object’s date, excluding the time
of day; the result is that our text box looks like Figure 7. Note that you have no
control over exactly how the date is represented; toLocaleDateString takes
its format from your system’s settings and is immutable beyond that.

But, what if we want to display our date with a format of our own?

Ah, well, then we need to do a little more work.

Figure 6. The toDateString method returns a text representation of
the complete date and time.

Figure 7. The toLocaleDateString method returns
a string version of just the date part of the Date object.

Acumen Journal: PostScript Tech		 11

The JavaScript Date Object

Constructing Our
Own Date String Here is a page JavaScript that produces the results in Figure 8.

var dt = new Date()
var fld = this.getField("txtDate")

var monthNames = ["January","February","March","April","May","June",
				 "July","August","September","October","November","December"]

fld.value = dt.getDate() + " " + monthNames[dt.getMonth()] + " " + dt.getFullYear()

Here we are getting the numeric values of the current date, month, and year and assembling them into a string representation
of our own choosing.

Step by Step var dt = new Date()
var fld = this.getField("txtDate")

We start, as before, by creating a Date object and getting a reference to the text field.

var monthNames = ["January","February","March","April","May","June",
				 "July","August","September","October","November","December"]

Here we are creating an array of month names. The Date object gives us a way of getting the current month as a numeric value
between 0 and 11; the monthNames array lets us convert a month number into a month name by using the former as an index
into the array. Thus, monthNames[3] would return the string “April”. (Remember array indices start at 0.)

fld.value = dt.getDate() + " " + monthNames[dt.getMonth()] + " " + dt.getFullYear()

Finally, we set the value of the text field.

Figure 8. We can also create
our own format for the

Date object’s string value.

Acumen Journal: PostScript Tech		 12

The JavaScript Date Object

This line of code uses three “get” methods of the Date object: getDate() gets the Date object’s day of the month (1-31);
getMonth() returns the month as an integer 0-11; getFullYear() returns the full year (2012, as of right now). The Date
object provides a good collection of get methods, including getHour(), getMinutes(), and getSeconds().

Our final JavaScript line

fld.value = dt.getDate() + " " + monthNames[dt.getMonth()] + " " + dt.getFullYear()

uses these methods to create a string that will be the value the text field; the string consists of:

■ dt.getDate()	 The day of the month.

■ " "	 A space.

■ monthNames[dt.getMonth()]
The name of the month. Note that we are using the month code, returned by dt.getMonth() as an index
into the monthNames array. JavaScript

■ “ “	 Another space.

■ dt.getFullYear()	The current year.

Put them all together and you have the text string we show in Figure 8.

Worth Knowing, Yes? The Date object is a useful little beggar; I think you’ll find that perusing the documentation on the Mozilla site (here) will be
time very well spent.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date

Acumen Journal: PostScript Tech		 13

Class Schedule

Schedule of Classes, May 2012– July 2012

At right are the dates of Acumen
Training’s upcoming classes. Clicking
on a class name will take you to the
description of that class on the Acumen
Training website.

O.C. and On-Site These classes are taught in Orange
County, California and on-site at corpo-
rate sites world-wide.

Please see the Acumen Training web
site for more information, including an
up-to-date schedule.

Class Fee Classes cost $2,000 per student, with the
following exceptions:

•	 Troubleshooting PostScript $1,500
•	 Support Engineers’ PDF $1,000

There is a 10% discount for signing up three or more students.

Note that if you have four or more students that need to take a class, it will almost certainly be cheaper to arrange an on-site class.

PDF Classes
PDF 1: File Content

and Structure Jun 11–14

PDF 2: Advanced File
Content

Support Engineers’ PDF May 10–11 Jul 19–20

PostScript Classes

PostScript Foundations Jun 4–8

Advanced PostScript Jun 25–28

Variable Data PostScript Jul 30 – Aug 3

Troubleshooting
PostScript May 7–9 Jul 16–18

http://www.acumentraining.com
http://www.acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/Descr_SEPDF.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html

Acumen Journal: PostScript Tech		 14

Contacting John

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: www.acumentraining.com/register.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

On-Site Classes Information regarding classes on corporate sites is available at www.acumentraining.com/Onsite.html. These courses are taught
throughout the world; for additional information on classes outside the United States, go to
www.acumentraining.com/OnsitesWorldWide.html.

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/Register.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/OnsitesWorldWide.html
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 15

What’s New

What’s New at Acumen Training?

Busy Times!
 New e-Book:

Beginning JavaScript
for Adobe Acrobat Beginning JavaScript for Adobe Acrobat is

finished; its release is awaiting some dickering
with Peachpit Press over some legal issues. In the
meantime, you can get more information, the
table of contents, and a free, 2-chapter sampler
from the Acumen Training website; click here.

Expanded PostScript
Consulting I’m going to be expanding my PostScript and

PDF consulting services. If you need help
with on a PostScript- or pdf-related project,
I provide a range of consulting services, from
email‑based question-and-answer to planning
and implementing a complete project.

More information is here on the Acumen
Training website.

New Website Design Speaking of which, the Acumen Training website has undergone a face lift. The new design is clean, attractive, and still easy to
navigate. I like it a lot and hope everyone who visits will, too.

http://www.acumentraining.com/QEDGuides
http://www.acumentraining.com/consulting.html
http://www.acumentraining.com

	Go Next Page 11:
	Go Next Page Bottom 10:
	Go Next Page:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:

	Go Next Page Bottom:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:

	Go Home:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:

	Go Prev Page:
	Page 2: Off
	Page 3:
	Page 4:
	Page 5:
	Page 6:

	Go Next Page 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:

	Go Home 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:

	Go Prev Page 2:
	Page 3: Off
	Page 4:
	Page 5:
	Page 6:

	Go Next Page 3:
	Page 7: Off

	Go Home 3:
	Page 7: Off

	Go Prev Page 3:
	Page 7: Off

	Go Next Page Bottom 2:
	Page 7: Off

	Go Next Page 4:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:

	Go Home 4:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:

	Go Prev Page 4:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:

	Go Next Page Bottom 3:
	Page 8: Off
	Page 9:
	Page 10:
	Page 11:
	Page 12:

	Go Next Page 7:
	Go Home 11:
	Go Prev Page 7:
	Go Next Page Bottom 6:
	Go Next Page 8:
	Go Home 12:
	Go Prev Page 8:
	Go Next Page Bottom 7:
	Go Next Page 9:
	Go Home 13:
	Go Prev Page 9:
	txtDate: 25 April 2012

