
Table of Contents

The Acrobat User Automatically Checking the Acrobat Version
Each version of Acrobat has added features that you may wish to use in your documents.
How do you ensure that the person reading your file has a sufficiently-modern version
of Acrobat? This month we see how to do this.

PostScript Tech Converting PFB Files to PostScript
It is easy to convert Windows-style font files to PostScript that may be embedded in
another PostScript file or downloaded to a printer.

Class Schedule Sept–Oct–Nov
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? September Seybold
See you in San Francisco, I hope!

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 19 © 2002 John Deubert, Acumen Training

John Deubert’s Acumen Journal, September 2002

Acumen
Training

Checking the Acrobat Version
Each version of Acrobat has added much to the capabilities of the Acrobat package.
Consider, for example, support for electronic forms. Acrobat 3 had only very simple
support for form fields. With Acrobat 4, forms came into their own, adding support for
a very rich array of form field types. Acrobat 5 provides a very much richer JavaScript
interface and some additional event types to which you may attach actions in a form.

If you design an Acrobat document that makes use of more-current features, it is
important that the people reading your Acrobat file be using a sufficiently-recent version
of Acrobat or the Reader.

How do you, as the document designer, ensure that the user has a version of Acrobat
that will correctly handle your PDF file?

The answer: you set up your Acrobat file
so that when a user opens the file, a
JavaScript program checks the user’s
version of Acrobat Viewer and puts up a
warning if they have too primitive a
version.

We shall do this by associating the JavaScript with the Page Open event for our docu-
ment’s first page. Acrobat will execute this JavaScript program every time it opens the
PDF file.

Let’s see how to do this.
Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Creating the
Page Open Action A Page Open action is an activity that is carried out whenever Acrobat opens a particular

page in a PDF file. We are going to use this mechanism, associating a version-checking
JavaScript with the first page of our Acrobat file.

Start within Acrobat by going to the first page in your document. Then do the following:

1. Select “Set Page Action…” This is located in Acrobat’s Document menu.

You will now be looking at the Page Actions dialog box.
This dialog box is similar to the Actions panel in the Form
Fields Properties dialog box. Here you may associate
one or more Acrobat Actions with either the opening or
closing of this page.

2. Select the “Page Open”
event and Click “Add” We want to associate a JavaScript with the

Page Open event, to be carried out when
Acrobat opens the page; select Page Open
in the When this happens… list.

Click on the Add… button to get to the “Add
an Action” dialog box (next page). This lets
you specify an action to be associated with
Page Open.

Next Page ->

Acumen Journal: Acrobat User 3

Checking Acrobat Version

3. Select “JavaScript”
from the “Type” Menu The Type pop-up menu specifies which

action you are going to associate with the
Page Open event. Select JavaScript.

Notice, in passing, that there are a lot of
other actions you can associate with Page
Open: play movies, sounds, etc. We’ll talk
about those sometime.

4. Click the Edit… button When you click on the
Edit… button, Acrobat
presents you with a very
simple text editing field
into which you may type
a JavaScript program.

Next Page ->

Acumen Journal: Acrobat User 4

Checking Acrobat Version

5. Type in the JavaScript The JavaScript at right
and below returns an
alert if the user’s version
of Acrobat is less than 5.
This is exactly what you
would use if your Acrobat
document uses form fields,
events, or other features
that were introduced in
Acrobat 5. (We’ll describe
this JavaScript in more
detail shortly.)

var v = app.viewerVersion;

if (v < 5)
app.alert("This form requires Acrobat 5 or later; you are using
Acrobat " + v);

Note that the “app.alert” line should be one line of JavaScript, as in the illustration above.

If you want to check for Acrobat version 4 or later, simply replace both instances of the
numeral “5” with “4.” (All forms should check for at least Acrobat 4, since Acrobat 3’s
form support was minimal.)

Click the OK button when you are finished.

Next Page ->

Acumen Journal: Acrobat User 5

Checking Acrobat Version

Back out of the
dialog boxes At this point, you should be once again

looking at the Add an Action dialog box.
Click Set Action to return to the Page
Actions dialog box.

Then click OK in the Page Actions dialog box
to return to your Acrobat page.

Finished! Now, every time anyone turns to this page
in the PDF document, Acrobat will run the
JavaScript and your reader will get an alert
if he or she does not have the minimum
version of Acrobat.

Save the PDF file and you’re done.

Next Page ->

Acumen Journal: Acrobat User 6

Checking Acrobat Version

The JavaScript
Explained The JavaScript we typed in as the Page Action was:

var v = app.viewerVersion;

if (v < 5)

app.alert("This form requires Acrobat 5 or later; you are using

Acrobat " + v);

Let’s look at each line of this script and see what it does. (The description here is a bit
imprecise and assumes no programming experience.)

var v = app.viewerVersion;

The term var (short for “variable”) creates a JavaScript named reference (v, in this
case) to some piece of information. We shall use v to refer to the version number of
the software being used to display the PDF file.

The term app refers to the application being used to view the Acrobat file (be it
Acrobat, the Reader, or Acrobat Approval). The phrase “app.viewerVersion” is a request
to the application to tell us its version number.

Loosely translated into English this line of JavaScript says:

“Get from the viewer application its version number and give that number the name v.”

Next Page ->

Acumen Journal: Acrobat User 7

Checking Acrobat Version

if (v < 5)
app.alert("This form ... you are using Acrobat " + v);

This line starts by saying “If the version number is less than 5, then do something.”
What we do in this case is ask the application (again, referred to as “app”) to display
an alert. Whatever is in the parentheses following the verb “alert” will be displayed in
the dialog box.

In this case, the alert box will have the
text “This form requires Acrobat 5 or
later; you are using Acrobat” followed by
the current version number, as at right.

Since the v in the parentheses is not
inside the quotes, the alert displays the
value of v (that is, the current version number), rather than the character v.

Next Page ->

Acumen Journal: Acrobat User 8

Checking Acrobat Version

Where to
Learn More JavaScript in Acrobat is stunningly useful. If you are interested in learning more about

it, there are actually two steps to the process:

1. Learn the JavaScript language.

You can do this from any number of very good books available in your local book-
store. All of these describe how to use JavaScripts in a web page, rather than in
Acrobat, but they will teach you how to use the language itself.

2. Learn how to use JavaScript within Acrobat.

The only documentation currently available for this is the
Acrobat JavaScript Object Specification, available directly
from the Acrobat (not the Reader) Help menu. This
document tells you how to manipulate Acrobat with
JavaScript. This is what tells you that “app” refers to the
current viewer application and that “app.viewerVersion”
fetches the Acrobat version number.

The JavaScript Object Specification is a reference volume,
not a tutorial; it very much assumes you know JavaScript.

Again, this document ships with the full Acrobat package;
you can get to it by selecting Help > Acrobat JavaScript
Guide (Acrobat 5) or
Help > Forms JavaScript Guide (Acrobat 4).

Return to Main Menu

Acumen Journal: Acrobat User 9

Checking Acrobat Version

Converting .pfb Files to PostScript
How do you embed a font in a PostScript file?

Windows-style downloadable font files (suffixed .pfb, “printer font, binary”) are
tantalizingly close to being useable. But if you just send the contents of the file directly
to a PostScript printer, you just get an undefined error; not useful.

This month, we’re going to see how to extract the font defined by a pfb file to a straight
PostScript file. This PostScript font definition may be embedded in another PostScript
program and the font will be available for use.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

PFB Font Format A downloadable PostScript font, be it Type 1 or Type 3, Mac or Windows, is really just a
PostScript program. If you pop open a Windows pfb file in a text editor, you will be
looking at PostScript code.

This code is conceptually very similar to the make-a-font exercise we do in the PostScript
Foundations class: it makes a dictionary, transfers it to the dictionary stack, and then
defines into it FontType, FontMatrix, and all the other things required by a PostScript
font.

Äô%!PS-AdobeFont-1.0: Courier-Bold 002.004

%%CreationDate: Tue Sep 17 14:02:34 1991

%%VMusage: 31992 40360

...

11 dict begin

...

/Encoding StandardEncoding def

/PaintType 0 def

/FontType 1 def

/FontMatrix [0.001 0 0 0.001 0 0] readonly def

/UniqueID 36384 def

/FontBBox{-113 -250 749 801}readonly def

Next Page ->

Acumen Journal: PostScript Tech 11

Converting PFB to PostScript

Note that this fragment
begins with some binary
data in front of the actual
PostScript code.

The pfb file contains
PostScript, but not only
PostScript.

Keep reading.

Eventually, the PostScript code executes the eexec operator (“Encrypted Execution”);
the remainder of the file contains encrypted PostScript code.

currentdict end

currentfile eexec

ÄËÅ–NïkxRiß/ó-ÏƒW¢>§ˇFéîˆä}•tÛ*\ÄüÆ˛Øs¸ ï

...

It’s important to understand that the encrypted part of the file (which makes up the
largest part of the font definition) is just PostScript, encrypted with the standard
PostScript encryption scheme. If you decrypt this data (it may be in either binary or
hexadecimal format), you would find it creates a dictionary named CharStrings and
populates that dictionary with paired character names and character definitions. (Each
definition is in the form of Type 1 drawing commands in a string.)

Next Page ->

Acumen Journal: PostScript Tech 12

Converting PFB to PostScript

The PostScript standard
encryption was the topic
of the May 2001 Journal.
You should read that
article if you are curious
about the details of the
encryption. (Go to the
Acumen Journal page on
the Acumen Training
website.)

http://www.acumentraining.com/AcumenJournal.html

File Segmentation The PostScript code in a pfb file is cut up into a series of segments. Each segment starts
with a six-byte header that specifies the length of that segment and how its contents
should be handled.

The format of each segment is as follows:

Byte 0 Must be set to the value 128. No, I don’t know why.

Byte 1 A processing instruction that tells you what to do with the contents of this segment. It
will be one of the following values:

0 The segment should be sent to the printer as-is. It contains either plain
PostScript or binary data in ASCIIHex format.

1 The segment should be converted from binary to ASCIIHex before
sending to the printer.

2 This value specifies end-of-file.

Bytes 2–5 This is a four-byte length of the segment data, low-byte-first. (Little endian is sensible
here, since pfb is primarily used on Intel machines.)

Bytes 6–n This is the segment data, PostScript code encrypted or in clear.

Next Page ->

Acumen Journal: PostScript Tech 13

Converting PFB to PostScript

Downloading a PFB
Font Downloading a font stored in pfb format is a relatively straightforward activity:

• Read the header.

• Read the next n bytes and send them to the printer (or target PostScript file),
converting to hexadecimal if needed.

• Repeat the first two steps until you run out of file or until the processing code turns
up 2.

Next Page ->

Acumen Journal: PostScript Tech 14

Converting PFB to PostScript

Abbreviated C
Code Let’s look at some C code that converts a pfb file to a straight PostScript file. This example

is very heavily edited; the full program is available among the PostScript samples on
the Acumen Training Resources page. Look for the file PFBtoPS.c.

Constants First, let’s define some constants:

#define kFontFileName "COB_____.PFB" // Source pfb file

#define kDestFileName "CourierBold.ps" // Destination PS file

#define kBigEndian true // Set to false if necessary

enum ErrCode { // Error codes returned by procedures

kErrNoErr,

kErrFileOpenFailed,

kErrMemory

};

enum { // Header codes indicating how to handle

kTypeASCII = 1, // each section in the .pfb file.

kTypeBinary,

kTypeEOF

};

Here, we’ve hardwired the file names; in real life you’d want a user interface (command
line, if nothing else) to specify this. Next Page ->

Acumen Journal: PostScript Tech 15

Converting PFB to PostScript

http://www.acumentraining.com/resources.html

A Typedef We’ll define a typedef’d structure that will hold the header information for each segment.

typedef struct {

char firstByte;

char segmentType;

long length;

} SegmentHeader;

main() Our main() routine does the following:

• Open the source and destination files.

• Loop through each segment in the file; for each segment:

- Read the header, checking for end-of-file.

- Send the segment to the destination file, converting to Hex, if needed.

• Close the source and destination files.

Next Page ->

Acumen Journal: PostScript Tech 16

Converting PFB to PostScript

For brevity, I’ve removed pretty much all of the error checking in this code; the file on
the Acumen Training Resources page is complete.

int main(void)

{

FILE *srcFile, *destFile;

SegmentHeader hdr;

boolean notDone = true;

enum ErrCode err;

// Open the source and destination files

srcFile = fopen(kFontFileName, "rb");

destFile = fopen(kDestFileName, "wb");

// Loop through all of the segments

err = kErrNoErr;

do {

notDone = GetSegmentHeader(srcFile, &hdr);

if (notDone)

err = SendSegment(srcFile, destFile, &hdr);

} while (notDone && !err);

fclose(srcFile);

fclose(destFile);

return err;

}

Next Page ->

Acumen Journal: PostScript Tech 17

Converting PFB to PostScript

Get the Header The GetSegmentHeader function reads the segment header (hence the name), returning
false if we’re at end-of-file.

boolean GetSegmentHeader(FILE *src, SegmentHeader *hdr)

{

fread(&(hdr->firstByte), 1, 1, src); // Read mystery byte 128

fread(&(hdr->segmentType), 1, 1, src); // Read processing code

fread(&(hdr->length), 1, 4, src); // Read segment length

// The length is always low-byte-first in the .pfb file

if (kBigEndian)

ReverseBytes(&(hdr->length));

// Return 'true' if the segment type indicates EOF

return (hdr->segmentType != kTypeEOF);

}

You might be tempted to read the segment header all in one throw:

fread(hdr, 1, 6, src);

I was reminded (empirically) that some implementations of C pad 1-byte structure
fields to word boundaries, preventing this from working.

I’ll leave out the definition of ReverseBytes; it’s boring.

Next Page ->

Acumen Journal: PostScript Tech 18

Converting PFB to PostScript

Send off the Segment Now we write the segment data to our destination file, converting to ASCII, if necessary;
again, I’ve left out much of the error handling.

enum ErrCode SendSegment(FILE *src, FILE *dest, SegmentHeader *hdr)

{

char *srcData;

// Allocate an appropriately-sized buffer

srcData = (char *)malloc(hdr->length);

// Read the segment data, converting to ASCII if needed.

fread(srcData, 1, hdr->length, src);

if (hdr->segmentType == kTypeBinary) {

srcData = ConvertToASCII(srcData, hdr->length);

hdr->length *= 2;

}

// Send the data on its way.

fwrite(srcData, 1, hdr->length, dest);

free(srcData);

return kErrNoErr;

}

The ConvertToASCII function converts the buffer’s contents to hexadecimal “in-place.”
(It reallocates the buffer.)

Next Page ->

Acumen Journal: PostScript Tech 19

Converting PFB to PostScript

That’s all there is to it The file produced by this C program contains the PostScript contents of the pfb file.
You can embed this PostScript font definition in any other PostScript file and use the
resulting font. If you place

true 0 startjob pop

at the beginning of the file, the font will be installed “behind the Server Loop” and will
be available to all future jobs on that printer until you turn it off.

Next Page ->

Acumen Journal: PostScript Tech 20

Converting PFB to PostScript

Macintosh
Font Files Macintosh font files are conceptually similar to the pfb files we’ve been discussing here.

The PostScript font definition is cut up into a series of segments, each identified
according to how they should be handled.

Those segments reside in the file’s resource fork as a series of POST resources numbered
sequentially from 501. Each POST resource begins with a one-byte code that indicates
the contents of that segment:

0 Comment; don’t download to the printer.

1 Send to printer as-is

2 Convert to ASCII Hex and send to the printer

3 Send an end-of-file marker to the printer. (This is usually a control-D
for serial and parallel communication.)

4 Indicates the font definition is in the data fork

5 End-of-Font. You may stop processing the font definition, though you
should not send an end-of-file indication to the interpreter.

I will eventually write a Mac font converter and put it among the PostScript resources
on the website; check back occasionally.

Return to Main Menu

Acumen Journal: PostScript Tech 21

Converting PFB to PostScript

If you’re not familiar with
the Macintosh file system,
each file on the Mac has
two separately-address-
able pieces: the data fork
(which corresponds to
what other OS’s think of
as a file) and the resource
fork, which contains a set
of program-definable bits
of data, each identified
by a type, a number, and
an optional name.

Acumen Journal 22

Page Title

Schedule of Classes, Sept – Nov, 2002
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations October 7 – 11

Advanced PostScript November 11 – 15

PostScript for Support
Engineers October 21 – 25

Jaws Development

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes �

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials October 3 (1⁄2-day, morning)

Interactive Acrobat

Creating Acrobat Forms October 3 (1⁄2-day, afternoon)

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1⁄2-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

See you at
Seybold! I’ll be teaching a pair of Acrobat classes at the Seybold Seminars (starts on September 9)

in San Francisco again this year. Come on by and say “hi,” if you’re in town.

Monday, 9/9, morning session - PDF for Prepress
Tuesday, 9/10, afternoon session - Creating Acrobat Forms

Go to the Seybold Seminars website for more information on the show.

Creating Acrobat
Forms Have you bought one for your poodle, yet?

Why not? (Acrobat Forms has been shown to promote healthy gum tissue in most
breeds of show dogs.)

Return to First Page

Acumen Journal: What’s New

What’s New?

http://www.seyboldseminars.com/sf2002/

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it compell you to
explain the disadvantages of being human to your household pets?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or
PostScript? Feel free to email me about. I’ll answer your question if I can. If enough
people ask the same question, I can turn it into a Journal article.

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnHome:
	btnPrev:
	btnNext:
	btnAlert:

