
Table of Contents

The Acrobat User Creating Your Own Rubber Stamp Annotations
One of the improvements in Acrobat 6 is that it is much easier to make your
own rubber stamp annotations, such as the “Nyah-nyah” note at right.

PostScript Tech A Name Lookup Procedure
This month we look at a procedure that takes a PostScript object as its argument,
looks the object up in the dictionary stack, and returns the name of the object on the
operand stack. Along the way, we’ll see an uncommon use for the stopped operator

Class Schedule Dec–Jan–Feb

What’s New? PDF File Content and Structure now available!
The class has been unleashed on an unsuspecting world. Hooray!

Contacting
Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 29 © 2003 John Deubert, Acumen Training

John Deubert’s Acumen Journal, November 2003

Glad to be back!

I’m pleased to be writing the Acumen
Journal again. I’ve had to skip the past
two issues while I was working on the
PDF File Content and Structure class.

The class is done. The Journal’s back!

Acrobat User

Acumen Journal: Acrobat User 2

Creating Your Own Rubber Stamp Annotations
One of the more fun features of Acrobats 4 through 6 is the
“Stamp” annotation. These annotations are cousins of the sticky
notes you could place on an Acrobat page, but are represented
on the page by pictures; they are the electronic equivalent of the
rubber stamps you can apply to paper documents. In Acrobat 4
and 5, the Adobe supplied a set of imaginative rubber stamps
you could use right out of the box, like those at right. (These are
screen shots, by the way; don’t bother clicking on them.)

Acrobat 6 shows Adobe’s recent focus on the corporate, rather
than the designer, market. The supplied stamps are
all very functional and useful, but not particularly
fun, like that at left.

Making up for this, Acrobat 6 has made it very easy to create your own stamps to
the stamp annotation tool. You could make custom stamps in Acrobat 5, also, but the
process was amazingly tedious. (Check out the June 2001 issue of the Journal to see
how this was done; you can get it from the Acumen Training Acumen Journal page.)

This month, we shall see how to add our own stamp to those supplied by Adobe in
Acrobat 6.

Next Page ->

http://www.acumenjournal.com/AcumenJournal.html
http://www.acumenjournal.com/AcumenJournal.html

Acumen Journal: Acrobat User 3

Creating Custom Rubber Stamps

Stamp Annotations
in Acrobat 6 There are several ways of applying

comments to a page in Acrobat 6.
I usually use the Rubber Stamp tool in
the Commenting Toolbar.

Click and hold on this tool to select
from a set of hierarchically organized
“rubber stamp” comments. (You can
get to this same submenu by going to
Tools>Commenting>Stamp Tool in the
menu bar.)

The Adobe-supplied stamps are organized into three categories: Dynamic, Sign Here,
and Standard Business. These contain a variety of very useful stamps which I will let you
explore. The Approved category is rather interesting: these stamps incorporate information
taken from Acrobat’s Identity preferences, dynamically inserting your name, the date, etc.

When you select a rubber stamp from one of the category submenus, the Acrobat cursor
turns into a little rubber stamp (as at left). Click on the Acrobat page (or click-and-drag
to specify a size) and the stamp you selected will appear on the page.

We are going to add a new category (“Personal Stamps”) and a new
stamp (“Nyah-Nyah,” at right) to this menu.

Next Page ->

Creating Custom Rubber Stamps

John Deubert
Nyah-Nyah
I did this artwork in Adobe Illustrator, exported to PDF, and then turned it into a rubber stamp.Read the text for the full story. (Of course.)

Acumen Journal: Acrobat User 4

Creating Custom Rubber Stamps

Making a New
Rubber Stamp

Step 1: Create
Your Artwork The first step in creating your own rubber stamp annotation is

to create the artwork that will represent your annotation on the
page. The artwork must ultimately be in PDF format, so you can
use any design application you wish—Illustrator, Photoshop, etc.—
that exports to PDF.

Simply create your artwork and then export to PDF in whatever
manner is used by your graphics application. This may involve
saving directly to PDF in the application; it may entail printing to a PostScript file and
then Distilling that file to PDF.

The page size of your PDF file doesn’t matter, incidentally; the size of the annotation
will be determined by only the artwork in the PDF file, not the size of the PDF page.

In my case, I made my “Nyah-Nyah” artwork in Adobe Illustrator 10, which does a nice
job of exporting directly to PDF.

Next Page ->

Acumen Journal: Acrobat User 5

Creating Custom Rubber Stamps

2. Select Create
Custom Stamp Having saved your annotation artwork as a PDF file, you can now import that PDF art

as a rubber stamp. Simply open Adobe Acrobat (you must have Professional version of
Acrobat) and do the following:

• Make the Commenting Toolbar
visible, if necessary.

• Click and hold on the stamp tool
(or click on the small, downward-pointing arrow next
to the tool) and select Create Custom Stamp from the
resulting drop-down menu.

Acrobat will present you with the Create Stamp
dialog box, at right.

• Click on the Select button to select your PDF file.

Next Page ->

Acumen Journal: Acrobat User 6

Creating Custom Rubber Stamps

3. Select Your Artwork When you click the Select button in the
Create Stamp dialog box, Acrobat presents
you with the Select dialog box, at right.

In the File field, type the complete
UNIX-style pathname to the PDF file that
contains your artwork.

Just kidding.

Actually, just click the Browse button and
select the PDF file in the resulting “Pick a
file” dialog box.

The dialog box’s Sample box will present you with a scrolling list of all the pages in the
PDF file. Scroll to the page containing your artwork, then click the OK button.

4. Specify a Category
and Name The Create Stamp dialog box now displays your

artwork. Select a category from the drop-down menu
(or type in the name of a new category) and type in a
name for your new annotation.

Note that you are not allowed to add a custom
annotation to the Adobe-supplied default categories.

Next Page ->

Acumen Journal: Acrobat User 7

Creating Custom Rubber Stamps

5. Close it up.
You’re done Click the OK button in the Create Stamp dialog box.

Your artwork is now a rubber
stamp in good standing in
your copy of Adobe Acrobat.
Both your new category and
your new rubber stamp will
appear in the Stamp Tool’s
drop-down menu.

Final Notes Adobe has made it much easier to create your own rubber stamps. I have little to add
to what we’ve discussed here. Two comments only:

Comment Window Your hand-built rubber stamp comment has a pop-up window
associated with it, so you may send along a text comment, not just a
pretty picture. Just double-click on the annotation (try it at right!) and
Acrobat will display a pop-up window containing the text.

Portability The annotation artwork is embedded in each PDF file in which you use the rubber
stamp, so the annotation will look correct on any machine that opens the PDF file.
However, this means you shouldn’t use large images or other bulky artwork for your
stamp, since these will significantly increase the size of the PDF file.

Return to Main Menu

John Deubert
Nyah-Nyah
Told you. Every rubber stamp, include yours, has a pop-up window with a text comment.

PostScript Tech

Acumen Journal: PostScript Tech 8

A Name Look-up Procedure
Here’s a mild challenge that came up a while back: I had need of a procedure that
would look up the name of the object on top of the operand stack. I ended up writing a
procedure, FindName, that takes a PostScript object as its argument and searches the
dictionary stack for a key-value pair that has that object as its value. FindName returns
either a name and a boolean true (if the object is found on the dictionary stack) or
only a boolean false (if the object is not found).

 /FindName % obj => /name true -or- false
 { ... } bind def

The definition of this procedure entailed an uncommon use of the stopped operator.

Let’s see how it works.

Next Page ->

Acumen Journal: PostScript Tech 9

A Name Look-up Procedure

The Procedure Here’s the definition of FindName:

/FindName { % obj => /name true -or- false

 /dictCount countdictstack def % How many dictionaries?

 /dArray dictCount array def % An array to hold the dicts

 dArray dictstack pop % Get the dict stack’s dicts

 { % Begin “stopped” proc

 dictCount 1 sub -1 0 % Begin “for”

 { dArray exch get % Begin “forall” with dict # i
 { 2 index eq % => obj key bool

 { stop } % Leave if object found

 { pop } % Else, discard name

 ifelse

 } forall % Go to the next key-value pair

 } for % Go to next dictionary in dArray
 } stopped % => obj false -or- obj /key true
 dup { 3 -1 roll}{ exch } ifelse % Bring the obj to the top o’ stack

 pop % Discard the original object

} bind def

Try it out… /x 12 def

12 FindName not {(Not Found)} if = % Print obj name or “Not Found”

/findfont load FindName not {(Not Found)} if =

(Testing) FindName not {(Not Found)} if =

 Next Page ->

Get the file

This PostScript code is
available on the Acumen
Training Resources
page. Look for the file
FindName.ps.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech 10

A Name Look-up Procedure

Step by Step Let’s look at this in detail.

Get the Dictionary stack /FindName {

Our procedure starts with a series of lines that copy the dictionaries on the dictionary
stack into an array. This will allow us to conveniently step through each dictionary, looking
for our target object.

/dictCount countdictstack def

The first line counts the number of dictionaries on the dict stack and stores the number
as the variable dictCount.

/dArray dictCount array def

We then create an array, dArray, with room to hold dictCount objects.

dArray dictstack pop

Finally, we copy the contents of the dictionary stack into dArray. We do this using the
PostScript dictstack operator.

 [array] dictstack => [dict0 dict1 ... dictn]

This operator takes an array argument and copies all the dictionaries on the dictionary
stack into that array. It returns the same array, now full of dictionaries. (Note in our
line of code that I didn’t have immediate need of this return value, so I discarded it.)

Next Page ->

Acumen Journal: PostScript Tech 11

A Name Look-up Procedure

Start a “stopped” procedure {
...
} stopped

we will execute the loop that searches for the target object inside a stopped procedure.

You may remember stopped from your PostScript class (you did take a PostScript
class, didn’t you?): it takes a procedure body from the stack and executes it. When the
procedure returns, stopped returns a boolean value that will be true if the interpreter
encountered the stop operator when executing the procedure body. The boolean will be
false if the procedure reaches the end without a stop.

The stop operator, for its part, causes execution to immediately drop out of the procedure
executed by stopped and provokes the latter operator to return a true.

Usually, stopped is used in trapping errors, since the PostScript error handler executes
stop when a PostScript error takes place. Thus, a typical use would be:

 { ... questionable code ... } stopped { errorstuff } if

The stopped operator executes the questionable code and returns a true if there was a
PostScript error, false otherwise. We can then report the error with our errorstuff procedure.

In our case, we shall search the dictionary stack for our target object inside a stopped
procedure. If we find the object, we shall execute stop. Not only will this drop us out of
our search, but also stopped will place a convenient boolean on the stack that will be
true if we found the object and false otherwise.

Next Page ->

stopped Arguments

Although we are using
stopped with a procedure
body, the operator can
actually take any execut-
able object, including
executable strings and
(very commonly) file
objects.

Acumen Journal: PostScript Tech 12

A Name Look-up Procedure

Step through the dict stack dictCount 1 sub -1 0
{ ... } for

We now start a for loop that steps through the contents of our array of dictionaries,
examining each dictionary in dArray in turn.

Note that the loop steps through the array from the back to the front. I want to search
for our target starting with the dictionary at the top of the dictionary stack, which is
the last item in the array.

Step through the
key-value pairs dArray exch get

{ ... } forall

Remember how for works: for each value of the counter, for puts the counter value on the
stack and then executes the procedure body. In our case, the procedure pushes dArray
onto the operand stack, reverses the array and the loop counter, and then executes
get, fetching a dictionary from the array.

We then push another procedure body onto the stack and execute forall. The forall
procedure steps through each key-value pair in the dictionary, pushing the key and
then the value onto the stack, and then executing the procedure.

Our procedure must examine the value, on top of the stack, to see if it matches our
target. If so, we shall execute stop.

Next Page ->

Acumen Journal: PostScript Tech 13

A Name Look-up Procedure

Examine a key-value pair 2 index eq

When executed, the procedure handed to forall will find two objects on top of the
stack: a key (below) and its associated value (on top). In addition, the target object
for which we search is still at the bottom of the stack; we shall need to preserve the
target object in the design of our loop procedure.

Thus, at the beginning of each execution of our forall procedure, the stack looks like
this (the bottom of the stack is to the left, as usual):

 tgt /key value

We want to compare the value to our target, so we do a 2 index, which brings a copy
of the target to the top of the stack:

 tgt /key value tgt

We then execute eq, the “equal-to” operator. This removes the target and the key-
value pair’s value, compares them, and returns a boolean value which will be true if
the two were equal.

 tgt /key bool

Next Page ->

Acumen Journal: PostScript Tech 14

A Name Look-up Procedure

Does the key match
our target? { stop }{ pop } ifelse

If the boolean returned by eq is true, we have found the object and our search is finished;
we execute stop, which causes execution to drop out of the stopped procedure. The
stopped operator will push a boolean true onto the stack, which now looks like this:

 tgt /key true

On the other hand, if the key-value pair’s value did not match our target, we shall
need to go on to the next pair. We discard the current key (with a pop) and continue
with the loop.

} forall

Thus endeth the forall loop. The loop examines each key-value pair in the current
dictionary until we find one with our target value (causing us to execute stop) or until
we run out of key-value pairs.

} for

Here’s the end of our for loop; this loop will have stepped us through each dictionary
on the dictionary stack (reading them from our dArray array).

Next Page ->

Acumen Journal: PostScript Tech 15

A Name Look-up Procedure

Exit stopped } stopped

Our stopped will conveniently return true if we found a match (because we executed
stop in that case) or false otherwise. The operand stack, upon returning from stopped
will have one of two possible sets of contents:

• If we found a match:

 tgt /key true

 Beneath the boolean, we shall have the key associated with our target object. We
shall also still have the copy of our target that we were so careful to preserve in our
nested loops.

• If no match was found:

 tgt false

 In this case, beneath the boolean will be only the copy of our target.

Next Page ->

Acumen Journal: PostScript Tech 16

A Name Look-up Procedure

Discard the Target We are very nearly done. We need to discard the copy of the target, since we are
finished using it; we also shall preserve the boolean returned by stopped because it
exactly matches the boolean return value we declared for our FindName procedure
(true if found, false if not).

dup { 3 -1 roll} { exch } ifelse

We first do a dup to preserve the stopped operator’s boolean return value. Our operand
stack now looks like one of the following cases:

• Name found: tgt /key true true

• Name not found: tgt false false

To discard the original target, we bring it to the top of the stack by doing a roll if the
boolean is true or a simple exch if the boolean is false. (Remember that ifelse consumes
the topmost boolean.)

pop

Finally, we do a pop, removing the target object from the stack and leaving only
FindName’s return values: a boolean and perhaps a name.

Next Page ->

Acumen Journal: PostScript Tech 17

A Name Look-up Procedure

Done! /x 12 def

12 FindName not {(Not Found)} if =
/findfont load FindName not {(Not Found)} if =
(Testing) FindName not {(Not Found)} if =

That’s it. To use our new FindName procedure, we shall see if it correctly recovers
three test items: the name of a variable, x, that we define ourselves; the procedure
body that implements findfont; a string that is not actually defined anywhere in the
dictionary stack.

In each case, we execute FindName and print either the name of the object or the
string “Not Found,” depending on the results.

The output, sent to stdout, looks like this:

x

findfont

Not Found

Comment The reason I trotted out this example was to demonstrate an alternative use of
stopped. As I said earlier, we mostly use stopped to trap errors. Here we used the
operator to drop us out of nested loops. As a side effect, we used stopped’s boolean
return value to conveniently determine whether our search was successful.

Next Page ->

Acumen Journal: PostScript Tech 18

A Name Look-up Procedure

Extra Credit for
Next Month FindName searches only the dictionaries immediately on the dictionary stack. It would

be useful if it could also recursively search any dictionaries it encounters in the course
of its examination. Thus, if x is defined inside myDict, itself defined in userdict, our
search would still correctly find the name:

/myDict <<

 /x 12

>> def

12 FindName % Should correctly return “x”

If you find yourself with a great bundle of spare time, you might want to rewrite
FindName so that it does this.

We’ll look at my solution in next month’s Journal.

Return to Main Menu

Schedule of Classes, Nov 2003 – Jan 2004
Following are the dates and locations of Acumen Training’s upcoming PostScript and PDF
Technical classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

Technical Classes

Technical Course Fees The PostScript and PDF classes cost $2,000 per student. Registration Info →

 Acrobat Classes →

PDF File Content
and Structure

Dec 8–11 Feb 23–26

PostScript
Foundations

Jan 12–16

Variable Data
PostScript

Dec 15-19

Advanced
PostScript Feb 9–13

PostScript for
Support Engineers Jan 26–30

Jaws Development On-site only

New!

Acumen Journal: Technical Class Schedule

PostScript & PDF Class Schedule

http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website
regarding setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumenjournal.com/AcumenJournal.html

What’s New at Acumen Training?

PDF File Content
and Structure

launched! The new PDF File Content and Structure course has been unleashed and is doing well.
On-site classes have been taught at Lexmark and Océ-Netherlands and an on-site
class is scheduled for mid-November at Adobe in San José. Seems to be popular, I’m
pleased to say!

You can see the final topic list for the class at the Acumen Training website: www.
acumentraining.com/Descr_TechPDF.html. This list of topics will probably change
somewhat as the class continues to mature. (For that matter, even the long-standing
PostScript Foundations class is still changing, though slowly.)

Acumen Editor™ I shall be putting the specialized text editor used in the class on the Acumen Journal
Resources page. This is a fairly minimal-functional text editor that allow you to write
hand-composed PDF files. Though its text-editing functions are not too extensive yet, it
will automatically calculate and insert the lengths of streams and create the xref table
required by a PDF file.

It’s not too robust, yet, but it will improve over time.

Acumen Editor requires either Mac OS X 10.2 or later or Windows 98 or later.

 Return to First Page

What’s New?

Acumen Journal: What’s New?

http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/resources.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Does it make you contem-
plate the futility of life?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask
the same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Acumen Journal: What’s New?

mailto:journal@acumentraining.com

Acumen Journal

Selecting Rubber Stamps

	btnNextPage:
	btnFirstPage:
	btnPrevPage:

