
Table of Contents

The Acrobat User Rollover Help
Acrobat supplies automatic support for “tool-tip” help for form fields. A common
alternative to tool-tip help is “roll-over” help that appears as soon as the mouse moves
over a control. This month we’ll see one way of implementing this in Acrobat.

PostScript Tech Text Along an Arc
Something fun this month: we’ll look at one method of printing text along an arc.
Along the way, we’ll discuss a bit about the nature of PostScript procedures.

Class Schedule Nov–Dec-Jan
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? New Project
Another book project coming up.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 20 © 2002 John Deubert, Acumen Training

John Deubert’s Acumen Journal, November 2002

Acumen
Training

Implementing Roll-Over Help
Consider the two buttons at right. Move your mouse cursor over the
first one and leave it there for half a second.
(This is not rhetorical: do it, please!)

After a moment, you will get a little text box that appears with some
tool-tip text. Acrobat supplies this feature automatically. In the Field Properties dialog
box, there is a text field labeled “Short
Description.” Anything you enter here will
be presented to the user if the cursor rests
over the form field for a half second. This is
what I use to label the navigation buttons
at the top of each Journal page.

Now move your mouse over the second
button. As soon as the cursor enters the
control, a window appears with help text in
it. This is “roll-over” text, appearing as
soon as the cursor rolls over the control.

Unfortunately, Acrobat does not provide
automatic support for roll-over help; we
need to do it ourselves with a combination
of “Mouse Enter” and Mouse Exit” actions.

Let’s see how.
Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Our Example In this article, we shall be adding
roll-over help to the “Enter”
button in the PDF file pictured at
right. As the cursor moves over
the button, some helpful text
will appear, as in the far right
illustration.

Overview The trick is that there are
actually two form fields in the
Axolotlville PDF file:

• The Enter button.

• A text field, initially invisible, holding the help text.

We create the text field in a hidden state. The Enter button
has a Mouse Enter action that makes the help field visible
and a Mouse Exit action that hides it again.

Note: In the discussion that follows, I assume you have had
at least some experience making Acrobat form fields using
the Form tool.

Next Page ->

Acumen Journal: Acrobat User 3

Roll-over Help

This PDF file is available
on the Acumen Training
Resources page. Look for
the file “Axolotlville.zip.”

The zip file contains two
versions of the PDF file,
one with and one without
the help text. Use the
latter if you want to try
out the steps outlined in
this article.

http://www.acumentraining.com/resources.html

Making the Text Field Our discussion assumes you have already created the Enter button. We shall add the
roll-over help to the page.

1. Create the text field Selecting the Form tool, click and drag out
the form field that will be our tool tip text.

Acrobat will present you with the Field
Properties dialog box, at right.

2. Assign a Type and Name Select Text in the Type menu and then give
your text field a name (in the Name field).
The name can be anything you like, though
I favor short, descriptive names. In the
illustration at right, I named my text field
“txtHelp.”

3. Options Panel Do the following in the Options pane:

• Type the text you want for your roll-over
help into the Default text field.

• Select the Multi-line checkbox.

I recommend you do this even if you have only a short snippet of text. It won’t hurt
in that case and prevents surprises later if you modify the help text.

Next Page ->

Acumen Journal: Acrobat User 4

Roll-over Help

3. Appearance Panel Go to the Appearance panel and do the
following:

• Set the Border and Background Colors
to whatever you like. I like pastel colors
for the background of help text, but feel
free to indulge your own tastes.

• Set the Border Width to Thin and the
Border Style to Solid.

• Set the Form field is: menu to “Hidden.”

• Select the Read Only checkbox.

Setting the Read Only property is
optional, since the user shouldn’t ever be able to click on the help text field. (It
disappears when they move the mouse off the Enter button.)

4. Click OK This will dismiss the Field Properties dialog box, returning you to your PDF page.

You are now looking at your Axolotl page again. So far, the changes you have made
are visually boring. (Looking at invisible objects is always a bit unexciting.)

Now let’s add the trigger that lets us use this text field as roll-over help.

Next Page ->

Acumen Journal: Acrobat User 5

Roll-over Help

Setting the Actions We need to add two actions to our Enter button:

• A Mouse Enter action that makes our help text visible when the mouse rolls onto
the button.

• A Mouse Exit action that hides our text again when the mouse rolls off the button.

We will implement these activities with Show/Hide Field actions attached to the appro-
priate events for our button.

1. Go to “Field Properties” With the Form Tool selected, double-
click on the Enter button. You will be
faced with the Field Properties for the button.

We are interested in the Actions pane of
this dialog box.

Here, we are going to attach an action to
each of the two events of interest.

2. Add the Mouse Enter
Action Click on the Mouse Enter event and then on

the Add… button.

Acrobat will present you with the Add an
Action dialog box, pictured on the next page.

Next Page ->

Acumen Journal: Acrobat User 6

Roll-over Help

3. Add Show/Hide Field In the Add an Action dialog box, do the
following:

• Select Show/Hide Field from the Type
Pop-up menu.

• Click on the Edit button.

Acrobat will present you with the
Show/Hide Field dialog box (below,
right).

• Select your help text field in the list
(txtHelp in the illustration) and click on
the Show button.

Since this is the Mouse Enter event, we want to
make the help text visible.

• Click OK in the Show/Hide Field dialog box and
Set Action in the Add an Action dialog box.

This returns us to Field Properties.

Next Page ->

Acumen Journal: Acrobat User 7

Roll-over Help

4. Add the Mouse Exit Action Now let’s add the Mouse Exit action in the same way:

• Click on the Mouse Exit event and
then click the Add… button.

• In the resulting Add an Action
dialog box, select Show/Hide Field
in the pop-up menu and click on
the Edit button.

• In the Show/Hide Field dialog box,
select your help text field and click on the Hide
button.

• Exit out of all dialog boxes until you are looking
at your PDF page again.

Done! That’s all there is to it. We now have fully
functioning roll-over help attached to our button.

Note that you can place invisible buttons (that is,
with no border or background) over anything on
your PDF page, letting you attach roll-over help to
text, graphics, or anything else you choose.

Next Page ->

Acumen Journal: Acrobat User 8

Roll-over Help

JavaScript Help Our method of creating
roll-over help using
Show/Hide Field actions
works very well if you
have only a small
number of buttons on a
page for which you need
to supply help. It
becomes unwieldy if you
have a large number of
help fields; managing all
those unvisible text
fields becomes messy.

A better strategy in that
case is to use a single
help text field and use a JavaScript for your Mouse Enter/Exit actions that puts help
text into the text field and makes the field visible. Unfortunately, this technique is more
than we have room for this month.

Next month, perhaps.

Return to Main Menu

Acumen Journal: Acrobat User 9

Roll-over Help

Printing Text Along an Arc
This month we’ll look at a PostScript snippet that prints arbitrary text along a circular
arc. We shall define a procedure called arcshow that takes a string and a radius from
the operand stack and prints the string on an arc centered on the currentpoint.

That is, the following PostScript code would yield the text
diagrammed at right.

x y moveto

(Acumen Training) 50 arcshow

Along the way, this little piece of code will let us discuss
some unobvious points about PostScript procedure bodies.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

Acumen Training

x,y

The Algorithm Here’s how we’re going to print our text:

1. Translate to the current point.

2. Calculate how much of an arc our string will subtend and rotate counterclockwise by
half that amount.

The first character will print where the y axis now intersects the arc.

3. Do the following for each character in the string:

• Do a moveto to a point r units up the y axis (where r is the radius of the circular
arc.)

• Rotate by half the angle subtended by the character we’re printing.

• Print the character.

• Again rotate by half the angle subtended by the character. This leaves us ready
to print the next character.

Next Page ->

Acumen Journal: PostScript Tech 11

Printing Text Along an Arc

y x y

x

A
y

x

A

The Code Here’s the PostScript. It extends across two pages; sorry.

/char 1 string def

% Given a string length, return the angle subtended by that string.

% (360OverCircumference is calculated at runtime.)

/arcLenToAngle % stack: strlen => angle

{ 360OverCircumference mul } bind def

/_arcshow % (c) => ---

{

dup stringwidth pop arcLenToAngle % (c) angw

-2 div dup rotate % (c) -angw/2

exch show % angw/2

rotate % - - -

} bind def

Next Page ->

Acumen Journal: PostScript Tech 12

Printing Text Along an Arc

As usual, this PostScript
code is available on the
Acumen Training
Resources page. Look for
the file arcshow.ps.

http://www.acumentraining.com/resources.html

/arcshow % (str) radius => ---

{

gsave

currentpoint translate % Move origin to currentpoint

dup 6.28 mul 360 exch div % Calculate 360OverCircumference

/360OverCircumference exch def % (= 360/2 r)

exch dup stringwidth pop 2 div % Rotate counterclockwise by half

arcLenToAngle rotate % the angle subtended by str
0 3 -1 roll moveto % Move to the (0,radius).
{ % Do a forall with the string

char 0 3 -1 roll put % Put each charcode into char
char _arcshow % Print it along the arc

} forall

grestore

} bind def

% Now let’s use it:

/Helvetica 12 selectfont

300 400 moveto

(Acumen Training) 50 arcshow

showpage

Next Page ->

Acumen Journal: PostScript Tech 13

Printing Text Along an Arc

Stepping Through
the Code Let’s look at our program a piece at a time.

Some initial definitions /char 1 string def

/arcLenToAngle % stack: strlen => angle
{ 360OverCircumference mul } bind def

We start by defining a 1-character string, char. We shall use this to convert a character
code to a printable string (e.g., convert the character code 65 into the one-character
string (A).

We also define a procedure that calculates the angular measure subtended by a given
string length. Remembering our trigonometry, we calculate this by:

angle = 360 x strlen / circumference

Our definition of arcLenToAngle uses a variable, 360OverCircumference, which we shall
need to calculate before we use the procedure.

Next Page ->

Acumen Journal: PostScript Tech 14

Printing Text Along an Arc

_arcshow The _arcshow procedure prints a one-character string on our
arc; we shall call this once for each character in our string.
The procedure assumes that the coordinate system has
been rotated so that the y axis intersects our arc at the
current point, where our character is to be printed.

/_arcshow % (c) => ---
{

dup stringwidth pop arcLenToAngle % (c) angw
-2 div dup rotate % (c) -angw/2
exch show % -angw/2
rotate % - - -

} bind def

In detail, here’s what’s happening:

dup stringwidth pop arcLenToAngle % (c) angw

We duplicate the string, calculate its width, and then calculate the angular measure
that corresponds to that string width.

-2 div dup rotate % (c) -angw/2

We halve that angle (and reverse its sign) and then rotate
clockwise by that amount.

The character, when we print it, will now be centered about
the y axis and will be oriented properly for the piece of the
circular arc that it occupies. Next Page ->

Acumen Journal: PostScript Tech 15

Printing Text Along an Arc

y x

y

x

A

exch show % -angw/2
rotate % - - -

Finally, we print the string and then rotate the other half of
the character’s angular width. This leaves the y axis running
through the current point’s new location (the latter having
been moved by the show operator).

arcshow This is the procedure we directly call in our PostScript code. It takes a string and a
radius from the operand stack and prints that string along an arc. The arc is centered
on the current point and has the specified radius.

/arcshow % (str) radius => ---
{

gsave
currentpoint translate
dup 6.28 mul 360 exch div
/360OverCircumference exch def % (str) radius
exch dup stringwidth pop 2 div % radius (str) strwid/2
arcLenToAngle rotate % radius (str)
0 3 -1 roll moveto % (str)
{ char 0 3 -1 roll put

char _arcshow
} forall
grestore

} bind def

Next Page ->

Acumen Journal: PostScript Tech 16

Printing Text Along an Arc

y
x

A

In Detail… gsave
currentpoint translate

We save the graphics state and move the origin to the current
point.

dup 6.28 mul 360 exch div
/360OverCircumference exch def % (str) radius

We define the variable 360OverCircumference. (You do remember that the circumfer-
ence of a circle is 2 r, don’t you?)

Note that our procedure’s arguments still remain on the operand stack.

exch dup stringwidth pop 2 div % radius (str) strwid/2

We calculate the width our our string and then halve that width.

arcLenToAngle rotate % radius (str)

We convert the half-width to an angular measure and then rotate that many degrees
counterclockwise.

0 3 -1 roll moveto % (str)

The last thing we do before we fire up our loop is moveto to a position the radius’
distance up the y axis. (We put a 0 on the stack—our x coordinate—and then do a
3 -1 roll, bringing the radius to the top of the stack.

Next Page ->

Acumen Journal: PostScript Tech 17

Printing Text Along an Arc

y

xcurrentpoint

{ char 0 3 -1 roll put
char _arcshow

} forall

Finally, we do a forall loop that steps through each character code in the string (the
string still being on the stack). Each time it is executed, the forall procedure will find
on the stack an integer representing a character code from the string.

The procedure puts the character code into position 0 of the char string. (Since char is
a one-character string, position 0 is the only position it has.) It then hands char to the
_arcshow procedure, printing the character at the current position on our arc.

grestore

Finally, we restore the graphics state to its previous condition. Note that arcshow has
no net effect on the current point, which is left at the center of the arc.

Use the procedure Finally, we print some text using our new arcshow procedure.

/Helvetica 12 selectfont
300 400 moveto
(Acumen Training) 50 arcshow

Note that after our call to arcshow, the current point is still at 300,400.

Next Page ->

Acumen Journal: PostScript Tech 18

Printing Text Along an Arc

Weaknesses This isn’t the only way to print text along an arc, of course. I’m sure one could make a
case for other, better methods. The main weakness of this technique is that it only
draws text along the upper arc.

For extra credit, modify arcshow so it will print text centered
about the lower arc, as at right. You’ll need to devise some way
to let arcshow know which arc you want. (Maybe a negative
radius could signify a bottom arc?)

Improvements
(Well, sort of…) Let’s make a couple of changes to our PostScript program. One of these changes is an

improvement. The second change makes your PostScript code marginally more efficient
while rendering it indecipherable by most PostScript programmers; but it’s fun.

Pretty fun, anyway.

Next Page ->

Acumen Journal: PostScript Tech 19

Printing Text Along an Arc

Acumen Training

The improved code Here’s how our program looks with these changes:

/arcLenToAngle % len => angle

{ 1 mul } bind def % The 1 is a place holder

/_arcshow % (c) => --- % No changes to _arcshow

{ dup stringwidth pop arcLenToAngle % (c) r ang

-2 div dup rotate % (c) r ang

exch show rotate

} bind def

/arcshow % (str) radius => ---

{ gsave

currentpoint translate

/arcLenToAngle load % Get the arcLenToAngle procedure body

0 % index 0 into the procedure body

2 index 6.28 mul 360 exch div % calculate 360 / 2 r

put % put value into proc. body, replacing "1"

exch dup stringwidth pop 2 div

arcLenToAngle rotate

0 3 -1 roll moveto

{ (X) dup 0 4 -1 roll put _arcshow % Here using an in-line string

} forall % constant instead of char
grestore

} bind def

So, what’s better? Next Page ->

Acumen Journal: PostScript Tech 20

Printing Text Along an Arc

Eliminate /char The first change we made was to eliminate the one-character string, char. Instead of
having a named string constant into which we put our character codes, one at a time,
we shall simply place a string constant in-line into our forall procedure.

{ (X) dup 0 4 -1 roll put _arcshow } forall

The single character in (X) is simply a place holder; the put replaces that character
with the character code currently being processed in the loop.

By the way, this looks though it would be a memory leak; it’s not. Strings are created
at scanning/tokenizing time, when the procedure body is constructed. The parentheses
tell the tokenizer to create a string object, containing a pointer to some place in VM; it
is this object-mit-pointer that is placed into the forall’s procedure body.

Next Page ->

Acumen Journal: PostScript Tech 21

Printing Text Along an Arc

Eliminate
360OverCircumference We also managed to get rid of the variable 360OverCircumference. This took a little

more work, since the value of this variable is calculated at runtime. To do this, we take
advantage of a little known fact regarding the nature of procedure bodies.

A procedure body is really an array; the array object is marked executable (which is
what makes it a procedure body), but it is otherwise exactly like any other PostScript
array. In particular, you can use put to alter the contents of a procedure body.

We make use of this fact to set at runtime the constant value that goes into the
arcLenToAngle procedure.

In our PostScript code, we now define arcLenToAngle as follows:

/arcLenToAngle { 1 mul } bind def

The 1 in this procedure body is purely a place holder. The arcshow procedure replaces
it at runtime with the actual value, which we originally associated with the name
360OverCircumference.

/arcLenToAngle load % { 1 mul }

0 % { 1 mul } 0

2 index 6.28 mul 360 exch div % { 1 mul } 0 360/2 r

put % put value into proc. body, replacing "1"

The procedure body associated with arcLenToAngle ends up containing the numeric
value 360/2 r and the executable name mul.

Next Page ->

Acumen Journal: PostScript Tech 22

Printing Text Along an Arc

However… I can’t say this second “improvement” is particularly worth doing, but it is an unusual
programming technique in PostScript and I thought it would be fun to show it off.

Truth be told, I don’t really recommend doing this; the miniscule savings in time you
gain (from eliminating a name lookup) isn’t worth the loss in readability.

It is fun, though.

Return to Main Menu

Acumen Journal: PostScript Tech 23

Printing Text Along an Arc

Acumen Journal 24

Page Title

Schedule of Classes, Nov 2002 – Jan 2003
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations December 2 – 6

Advanced PostScript November 11 – 15

PostScript for Support
Engineers January 20 – 24, 2003

Jaws Development On-site only; see the Acumen Training website for more information.

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes �

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website
regarding setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1⁄2-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

New Project
Brewing I’ve no particular information to pass out just now, but I’m starting work on a new project.

Tell you about it next month, probably.

Creating Acrobat Forms
John Deubert, Adobe Press

“I found it immensely helpful
in settling the Gauls’ hash.”

— J. Caesar

Return to First Page

Acumen Journal: What’s New

What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it inspire you try to
conduct your own appendectomy?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or
PostScript? Feel free to email me about. I’ll answer your question if I can. If enough
people ask the same question, I can turn it into a Journal article.

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnToolTip:
	btnRollover:
	txtRollover: This is roll-over help.
	btnInvisibleHelp:
	txtTextHelp: Look behind you!
	btnHome:
	btnPrev:
	btnNext:

