
Page Title

Table of Contents

The Acrobat User Creating Your Own Rubber Stamp Annotations

Among the Acrobat’s annotations types is “Rubber Stamp,” which lets you place a picture

on the page as an annotation. This month we’ll see how to add our own pictures to the

predefined stamps supplied by Adobe.

PostScript Tech Adding Characters to a Type 1 Font

This month we answer a common question: how do you add a character to a Type 1 font?

Class Schedule June-July-August

Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? More details on the Technical PDF class

News about the Technical PDF class currently in development.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, © 2001 John Deubert, Acumen Training

John Deubert’s Acumen Journal, June 2001

Acumen
Training

Acrobat Article Title - Page 1

Creating Your Own Rubber Stamp Annotations

One of the more fun annotations available in Adobe Acrobat is the “Rubber Stamp.” A

rubber stamp annotation consists of a resizeable picture to which you may attach a note.

(The picture at left is one of these; double click on it and you can see an attached note.)

You choose the picture you want to

use from a list presented to you by

Acrobat. Adobe supplies a fair

number of predefined pictures,

nicely categorized into names,

pointers, etc.

It is fairly easy to add your own

pictures to this list. This is what

we’ll be discussing this month: how

to add your own custom rubber

stamps to Acrobat.

Next Page ->

The Acrobat User

Acumen Journal: The Acrobat User

John Deubert
Okay, so it's not a very exciting note.

A Review: Placing
a Rubber Stamp Before we discuss adding our own rubber stamp annotation to Acrobat, let’s review

how you place such an annotation on the page.

The Rubber Stamp Tool The Rubber Stamp tool is

one of the “Special” anno-

tations, grouped in the

Acrobat toolbar with the

sticky note and the sound

annotation. This is the topmost annotation group

in Acrobat 4 and the leftmost in Acrobat 5.

When you select the Rubber Stamp tool, your

cursor turns into a crosshair with which you may

drag out a rectangular area where your annotation

will go.

Next Page ->

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 2

Rubber Stamp, Acrobat 4

Rubber Stamp, Acrobat 5

Rubber Stamp Properties Once you have dragged out the location for your annotation, Acrobat 4 and 5 do

different things.

Acrobat 4 takes you immediately to the Stamp Properties dialog box (below).

Acrobat 5 simply places the currently-selected rubber stamp immediately on the page.

To get to the Rubber Stamp properties dialog box, you will

need to click once on the new annotation (which selects it)

and then select Properties in the Edit menu.

Either way, you will now be staring

at the Stamp Properties dialog box.

This dialog box allows you to

select a picture for your rubber

stamp. The pictures are grouped

into categories selectable from the

Category pop-up menu.

We’re going to add a couple of

pictures to this list and place them

in their own category.

Next Page ->

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 3

Where does Acrobat

get these stamps? The stamps that Acrobat offers us actually reside in a set of PDF files. Each PDF file

becomes a category in the pop-up menu; each page within the PDF file becomes a

stamp in that category.

These PDF “source files” reside in slightly different places in Acrobat 4 and 5.

In Acrobat 4, the files reside in a “Stamps”

folder in the Plug-ins folder in the Acrobat

folder. (That is, Acrobat>Plug-ins>Stamps.)

In Acrobat 5, they reside in

Acrobat>Plug-ins>Annotations>Stamps.

The “Title” property of each these PDF files (among the Acrobat Document Properties)

becomes the name of the Category in the Acrobat pop-up menu.

Each page in these PDF files is marked as a “template page.” Template pages are a

mechanism by which JavaScripts can add pages to a PDF file on the fly. The Rubber

Stamp annotation uses page templates to provide names for the individual stamps in

this category.

Let’s see how this works.

Next Page ->

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 4

Creating a
Rubber Stamp To create our own rubber stamp and category, we need to do the following:

1. Prepare the artwork for our stamps.

2. Convert each stamp artwork into a PDF file.

3. Assemble all of the stamp PDFs into a single file.

4. Set the Title property of the file to the name we want for our new category.

5. Convert each page in the PDF file into a page template whose name becomes the

stamp’s name.

6. Move the PDF file containing our custom stamps into the Stamps folder.

Our Example Let’s create an “Emoticon” category containing two stamps: a smiley face and a wink

(as at left).

By the way, all of the files involved in preparing these stamps (two Illustrator 6.0 files

and a PDF file) are available from the Acumen Training website. Go to

http://www.acumentraining.com/resources.html and look among the Acrobat samples.

Next Page ->

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 5

http://www.acumentraining.com/resources.html
John Deubert
This is our "Smiley Face" Emoticon stamp.

John Deubert
This is our "Wink" Emoticon stamp.

1. Prepare artwork In this case, I did the original artwork in Illustrator 6.0. The emoticons are built out of

Stone Sans characters converted them to outlines. (Again, these two files are among

the Acrobat samples on the Acumen Training website.)

2. Convert to PDF There are a lot of ways to do this, including:

• Print to a PostScript file, then hand the

PostScript to Distiller or PDF Creator.

• Print to EZ-PDF (my personal favorite,

although Enfocus hasn’t yet re-released

that product).

• Save the artwork to PDF directly from

Illustrator.

In this case, since the artwork is so simple, I just saved each document to a PDF file

from within Illustrator itself.

Next Page ->

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 6

3. Assemble a Single

PDF file Having made a series of PDF files, one for each of our stamps, we need to assemble

them into a single PDF file, each stamp as an individual page.

The most straightforward way of doing this is to open one of the

stamp files in Acrobat and then add the other files, one at a time,

using the Acrobat Include Pages command. A bit tedious, but not

at all hard.

This new PDF file, containing our individual stamps as separate

pages, will represent our new rubber stamp category to Acrobat.

Eventually, we will need to eventually move it into the Stamps

folder so that Acrobat can find it.

A shortcut If you have more than a few PDF files to concatenate, you might find it a lot easier to

save your original Illustrator (or whatever) artwork as a series of EPS files and then

import them, one to a page, into a QuarkXpress/PageMaker/InDesign document. You

can then convert the page layout document to PDF.

This will let you create your multi-stamp PDF file in one go without concatenating a

series of individual PDF files.

Next Page ->

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 7

4. Set the Title Property Now we want to set the Title property of the composite PDF document to the name of

our new rubber stamp category.

Open the newly-made PDF file in Acrobat and select either:

• In Acrobat 4:

File>Document Info>General…

• In Acrobat 5:

File>Document Properties>Summary…

In either case, you will be looking at a dialog

box similar to that at right. (This is the

Acrobat 4 version; the Acrobat 5 dialog box

is functionally the same.)

Enter the name you want for your new Stamp

category into the Title box. Here I’ve entered

“Emoticon” for my new category.

Click the OK button to dismiss this dialog box.

Next Page ->

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 8

5. Name Each Stamp Now we need to assign a name to each of the pages in our PDF file; these will become

the names of the individual stamps in our category.

In Acrobat, for each page in the PDF file, do the following:

1. Select Tools>Forms>Page Templates…

This yields the Document Templates

dialog box.

The Rubber Stamp mechanism uses page

templates to assign names to the individual

stamps in a category.

2. In the Name field, we shall enter text that

defines the name for the current page’s

stamp. This odd-looking text has the form:

CategoryNameStampName = VisibleName

The text to the left of the equal sign is the

concatenated category name (Emoticons)

and stamp name (Wink).

To the right of the equal sign is the name

of the stamp as it should appear in the Category pop-up menu. (The stamp’s internal

name does not need to be the same as the name presented to the user. This allows

the stamp’s name to be in a localized language.)

Next Page ->

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 9

6. Put the PDF File into

Stamps We’re done with the PDF file. Save it to disk and then drag it into the Stamps folder.

Remember that this will be one of two places, depending on your version of Acrobat:

• Acrobat 4: Acrobat>Plug-ins>Stamps

• Acrobat 5:

Acrobat>Plug-ins>Annotations>Stamps

Done! That’s all there is to it. Launch

Acrobat, select the Rubber Stamp

tool and look at the Stamp

Properties. You will find your new

category and stamps added those

supplied by Adobe.

By the way… Other people don’t need to have

your stamp installed in their

Acrobat in order to see it correctly.

The PDF drawing commands for

your stamp are embedded in the

PDF file. It will display just fine.

Return to Main Menu

Acumen Journal: Acrobat User

Creating a Rubber Stamp - Page 10

John Deubert
Note that you can resize these rubber stamp annotations. However (a big however), if the particular stamp is not installed in your version of Acrobat, the stamp will revert to an installed stamp.

Adding Characters to a Type 1 Font

A question I see on the PostScript newsgroup periodically is “How do I add a character

to a Type 1 font?” Often, the person asking the question is needing to add the Euro

character to a font they must use.

This turns out to be a relatively simple task, if you know just a little PostScript.

In this month’s PostScript Tech article, we’re going to add a smiley face character to

Helvetica, assigning it the character code normally occupied by upper-case “O.”

Thus, “O Me, O My, O” will print like this:

Next Page ->

PS Article Title - Page 1

Acumen Journal: PostScript Tech

PostScript Tech

� me, � my, � !

Font Structure Let’s start by reviewing how the show operator draws characters in a Type 1 font. This

will be review if you’ve taken any of the Acumen Training PostScript classes.

Encoding and CharStrings There are two entries in a Type 1 font dictionary that together map character codes in

a string into a set of drawing instructions in the font:

• Encoding is an array of character names that establishes the correspondence

between character codes and characters. Each entry is the name of a character

within the font. The position of each character name in this array determines the

character code of that character.

• CharStrings is a dictionary that pairs character names with drawing instructions.

Each key in this dictionary is a character name; associated with each name is a

string whose bytes are the Type 1 drawing instructions for that character.

The show operator uses each

byte in its string argument as

an index into the current font’s

Encoding array; this gives it the

name of the character that

should be printed.

Show then uses this name as a

key into CharStrings. The

associated string full of drawing instructions is handed to the Type 1 rasterizer.

Next Page ->

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 2

/charname

Encoding
Character

Code

(_ _ _ _ _ _)show

CharStrings

/charname < T1 Cmds>

Adding A Character Surprisingly, a character name in CharStrings may be paired

with a PostScript procedure, rather than with a Type 1 string.

The show operator simply hands this procedure to the

PostScript interpreter when it needs to print that character.

This makes it relatively easy to add your own character

shapes to a Type 1 font. All you need to do is:

1. Write a PostScript procedure that draws your character.

2. Insert the modified procedure into the CharStrings

dictionary, giving it whatever name you wish.

3. Insert the character’s name into the Encoding array in the position corresponding to

the character code you want for the new addition.

Next Page ->

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 3

CharStrings

/mychar { PS Cmds }

/leftparen < T1 Cmds>

/A < T1 Cmds>

/exclam < T1 Cmds>

Changing read-only fonts The only complication is that PostScript font dictionaries are read-only; you can’t change

them. What you can do is create an entirely new font identical to the original, but

incorporating the changes you wanted to make to the original font.

In our case, we’ll make a copy of Helvetica that contains a smiley face character.

If you have taken any of the PostScript classes, you will remember that there

are four steps to changing a font:

1. Create a new dictionary the same size as your original font plus room for the changes

you want to make.

2. Copy everything from the original font into the new dictionary. In PostScript Level 1

you need to not copy the /FID entry, but we’ll ignore this detail here, since Levels 2

and 3 don’t need to worry about it.

3. Make whatever changes you want to your new dictionary.

4. Turn the dictionary (with your changes) into a font dictionary using the PostScript

definefont operator.

The definefont operator takes a name and a dictionary from the operand stack, converting

the dictionary into a font dictionary with the specified name. It returns a copy of the

new font dictionary on the operand stack:

/FontName << dict >> definefont ⇒ << fontdict >>

Next Page ->

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 4

The PostScript Code Here is the PostScript code that installs the SmileyFace character into Helvetica. The

new character is associated with ASCII code for “O.” (This file is available among the

PostScript samples at www.acumentraining.com/resources.html.)

/Helvetica findfont dup length dict copy begin % Copy Helvetica

/CharStrings CharStrings dup length dict copy def % Copy CharStrings

CharStrings /HappyFace % Insert the char. def.

{ 1000 0 0 0 1000 1000 setcachedevice

500 400 translate

0 0 450 0 360 arc

50 setlinewidth stroke

-200 250 50 0 360 arc fill

200 250 50 0 360 arc fill

0 200 400 225 315 arc stroke

} bind put

/Encoding Encoding dup length array copy def % Copy Encoding

Encoding 79 /HappyFace put % Insert char. name

/HelvHappy currentdict definefont pop % Create the new font

end

/HelvHappy 30 selectfont % Use the new font

72 600 moveto

(O me, O my, O!) show Next Page ->

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 5

http://www.acumentraining.com/schedule.html

Stepping Through the

Code Let’s look at this PostScript code in detail...

Make a new dictionary /Helvetica findfont dup length dict copy begin

We start by making a new dictionary that is the same size as the Helvetica font dictionary.

We copy everything from Helvetica into this new dictionary, which we then move to the

top of the dictionary stack with begin. (This way we can get to its contents by simply

referring to their names; we can also put things into it with a simple def.)

Make a writable CharStrings /CharStrings CharStrings dup length dict copy def

We want to add our character definition to CharStrings; unfortunately, this dictionary

(which we copied from Helvetica) is read-only. So, we create a new dictionary and copy

everything from our original CharStrings into it.

Finally, def places this new, writable CharStrings into our new font dictionary, replacing

the read-only original.

Next Page ->

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 6

Insert the character

definition CharStrings /HappyFace

{ 1000 0 0 0 1000 1000 setcachedevice

500 400 translate

...

} bind put

We put our smiley face PostScript procedure into the new CharStrings dictionary, giving

it the name “HappyFace.”

A character procedure should draw a 1-point character at the origin in the Type 1

coordinate system, in which there are 1000 units to the point. (Our smiley face character

is drawn 900 units in diameter.)

In addition to drawing a smiley face, our character procedure makes a call to the

setcachedevice operator.

wx wy xll yll xur yur setcachedevice ⇒ - - -

This is required; it defines the character’s metrics.

wx wy are the distance show should move the current point after the

character is printed. For us, wy is zero, since we print horizontally.

xll yll xur yur are the coordinates of the lower left and upper right

corner of the bounding box of the character. This bounding box

should exactly enclose the painted character.

Next Page ->

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 7

xll, yll

xur, yur

Assign a character code /Encoding Encoding dup length array copy def

Encoding 79 /HappyFace put

To assign a character code to our character, we must place its name into the appropriate

position of the font’s Encoding array. Unfortunately, our Encoding (again, copied from

Helvetica) is also read-only. So, as with CharProcs, we replace the original, read-only

Encoding with a new, writable version, copying everything from the original array into

the new.

Then we put the name “HappyFace” into position 79 of the new Encoding. Upper case O

will print as a smiley face.

Create the font dictionary /HelvHappy currentdict definefont pop

end

Finally, we turn our dictionary into a font dictionary with definefont. In your PostScript

class, we went into detail as to what definefont does. Here, we’ll just say that the

operator turns our dictionary into a font dictionary with the name HelvHappy. This is

the name we’ll need to hand to findfont or selectfont.

The end removes the dictionary from the dict stack; we don’t need it there anymore.

Next Page ->

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 8

Use the font /HelvHappy 30 selectfont

72 600 moveto

(O me, O my, O!) show

We can now use the HelvHappy font like any other.

It’s just like Helvetica, only annoyingly cheerful.

Caveats There are a couple of warnings associated with this new character:

Character Proc Restrictions The PostScript in your character procedure is subject to two important limitations:

Well-behaved Your PostScript procedure must be well-behaved, in the EPS meaning of the term. No

use of erasepage, quit, showpage, or init-anything. See the EPS file specification for a

complete description of “well-behaved.” (You can get this from Adobe’s web site or from

Acumen website’s Resources page.)

No color operators allowed Your character procedure may not change the color. This means you may not call setgray,

setcolor, setrgbcolor, image, or any other operator that changes the color or colorspace.

If your character prints a bitmap, it must use imagemask, rather than image. This is a

limit imposed by setcachedevice.

Next Page ->

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 9

� me, � my, � !

http://www.acumentraining.com/schedule.html

If you absolutely must change color within your character definition, you will have to

replace setcachedevice with a call to setcharwidth. This operator is similar to

setcachedevice, but it takes only the current point offset:

wx wy setcharwidth ⇒ - - -

Look in the PostScript Language Reference Manual or the PostScript Foundations student

notes for more details on setcachedevice and setcharwidth.

ATM Won’t Like This Note that Adobe Type Manager will not work with your inserted character. ATM only

works with characters defined using Type 1 drawing commands.

Return to Main Menu

Acumen Journal: PostScript Tech

Adding Characters to a Type 1 Font - Page 10

Schedule of Classes, June 2001 - August 2001

Following are the dates and locations of Acumen Training’s PostScript and Acrobat classes.

Clicking on a class name below will take you to the description of that class on the

Acumen training website.

The PostScript classes are taught in Orange County, California, near the Orange County

airport, and in London at Adobe Systems’ offices near Heathrow.

PostScript Classes

PostScript Foundations Orange Co., CA June 4 - 8 Orange Co., CA August 6 - 10

Advanced PostScript Orange Co., CA July 16 - 19

PostScript for Support

Engineers Orange Co., CA July 23 -27

Jaws Development Orange Co., CA July 30 - August 2

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $1,750 per student. The Jaws class is $2,000 per student.

These classes may also be taught on your organization’s site. Registration →

Acrobat Classes →

Page Title

Acumen Journal: Class Schedule

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

Acumen training teaches three users’ classes in Adobe Acrobat (the links below will

take you to the Acumen website’s complete description). These are all taught with

Acrobat 5, although Acrobat 4 versions may be taught if this is what your site uses.

Acrobat Essentials This class teaches the student how to make perfect PDF files. It includes complete

coverage of the meaning and proper settings of all of the Distiller Job Options.

Interactive Acrobat Here we show you how to add bookmarks, links, buttons, sounds, movies, form fields,

and other interactive features to an Acrobat file.

Troubleshooting with

Enfocus’ PitStop This class shows the student how to use all of the capabilities of this popular editing

and preflight software.

On-site Only The Acrobat classes are taught only on corporate sites. If you have an interest in any

of these classes for your group, please see the Acumen Training website regarding

arranging an on-site class.

Back to PostScript Classes

Return to First Page

Page Title

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s

classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact us any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:

www.acumenjournal.com/AcumenJournal.html

Return to First Page

Page Title

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

PDF Class Info Here is some new information about the Technical PDF class currently in development.

Duration The class will be a four day, hands-on class.

Audience The course will be primarily aimed at printer engineers and technical support personel

in companies that are developing printers that consume PDF directly. The emphasis will

be on PDF file structure and content with an eye toward what a printer needs to pay

attention to when printing a PDF file.

The course is designed to be also very useful for people who will be producing PDF

directly in their software.

Completion Data I’m currently looking to conduct the first class in October.

Course Topics The current list of topics is on the Acumen Training website

(www.acumentraining.com/Descr_PDFTech.html). I am looking for comments on this

list: what should be added, removed. Anything you wish to say.

Return to First Page

Page Title

Acumen Journal: What’s New

What’s New?

Journal Feedback

If you have any comments regarding the Acumen Journal, please let me know. In

particular, we are looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?

Was it well written and understandable? Did you like it, hate it, or did it make you want

to eat brussels sprouts? How could we make it better? Do you like the PDF format?

Suggestions for articles. Each Journal issue contains one article each on PostScript

and Acrobat. What topics would you like us to address?

Questions and Answers. We are planning a Q&A section for future issues. Do you

have any questions about Acrobat, PDF or PostScript?

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Page Title

Acumen Journal: Feedback

mailto:journal@acumentraining.com

xll, yll

xur, yur

wx

wy = 0

Acumen Journal

setcachedevice Arguments

Sorry this illustration is a bit
busy.

Note that wx and wy are the
distances show should move
the currentpoint after the
character is printed.

Wx will be the character’s
width plus side bearings to
the left and right.

Wy will be zero, presuming
your font prints horizontally.

Everything here is expressed
in the Type 1 coordinate sys-
tem wherein there are 1000
units to the point.

Return

wx wy xll yll xur yur setcachedevice ⇒⇒ - - -

Acumen Journal

Document Info > General

	btnHome:
	btnPrev:
	btnNext:

