
Table of Contents

The Acrobat User Acrobat 6 Layers and Forms
Acrobat 6 has added support for Layers. This allows the easy, wholesale hiding and
revealing of buttons and other features on a PDF page.

PostScript Tech Binary Tokens
PostScript is an ASCII language; a PostScript program is a stream of ASCII characters.
PostScript also has a little-known binary version in which numbers and names are
represented as a stream of binary values. This can greatly reduce PostScript file size.

Class Schedule Aug–Sept–Oct

What’s New? Acumen Editor Does PostScript
Acumen Editor can now send PostScript files to Distiller, Jaws PDF Creator, or GhostScript
for processing, allowing it to be used in Acumen Training PostScript classes.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 33 © 2004 John Deubert, Acumen Training

John Deubert’s Acumen Journal, June 2004

Acrobat User

Acumen Journal: Acrobat User 2

Acrobat 6 Layers and Forms
Acrobat 6 introduced a concept new to the Acrobat and PDF world: Layers. This is a
feature of long standing in design and page layout software, but is new to the PDF file
spec. The introduction of layers makes possible a set of new and powerful abilities for
people who design PDF files. In particular, layers make it extremely easy to hide and
show collections of information on a PDF page.

For example, you may have several versions of an
document’s text (perhaps in different languages)
placed on the page in different layers. When the
reader of the document selects a language from
a pop-up menu, the menu could make visible the
layer that contains that version of the text. (There
is an example of just such a document among the
sample files for this month.)

This month we are going to see how layers work in
Acrobat. We’ll look at the Acrobat Layers panel and
see how to create simple buttons that make specific
layers visible. We shall also see how to manipulate
layer visibility with JavaScript.

Next Page ->

This month’s sample files
are packaged into the file
AcrobatLayers.zip, available,
as always, on the Acumen
Training Resources page.

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User 3

Acrobat Layers

Creating Acrobat
Layers First the disappointing news: you cannot create layers within Acrobat itself. You must

assign objects to layers within whatever application you use to create the PDF file.

Many design and layout programs support a notion of layers, but few of them will
preserve those layers when exporting to a PDF file. The applications that do so
include the current (“CS”) versions of Adobe Illustrator and Adobe InDesign.

Preserving Layers
in Adobe Illustrator For example, when you export

an Illustrator document to PDF,
Illustrator presents you with
the Adobe PDF Options dialog
box (at right).

Simply select the Create Acrobat
Layers… button in this dialog
box and Illustrator will convert
layers in the Illustrator document
into Acrobat layers in the PDF file.

Next Page ->

Acumen Journal: Acrobat User 4

Acrobat Layers

Sample Files The two sample files for this article are
on the Acumen Training Resources page;
there are four PDF files packaged into the
file AcrobatLayers.zip. Three of these sample
files started life as an Illustrator document
containing a square and a circle, each in
its own layer.

The Layers Pane The original Illustrator document was exported to a PDF file, preserving the layers.
The resulting Acrobat document,
Layers Demo 1.pdf, at first looks like
any other PDF file. The only evidence
that this file contains layers is the
cute little cake icon in the lower
left corner of the window frame.

The individual layers become
evident when you click on the
Layers tab at the left side of the
Acrobat window. This exposes the
Layers pane, which lists all of the
layers in this Acrobat file.
 Next Page ->

Note: Because layers were
introduced with Acrobat 6,
you will need to use that
version of Acrobat to open
this month’s sample files.
Earlier versions of Acrobat
ignore the layer information.

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User 5

Acrobat Layers

Controlling Layer Visibility To the left of each layer’s name in
the Layers palette is an eyeball icon.
Clicking on this icon toggles the visibility
of the corresponding layer.

This works well enough for experimen-
tation, but an Acrobat form should
control layers’ visibility with, say, a set of
buttons.

Layers and Buttons Let’s add three buttons to our Acrobat file:
Show 1, Show 2, and Show Both that make visible
Layer 1, Layer 2, and both layers, respectively. The
final form will look like the illustration at right.

I am going to assume that you have skill with
Acrobat forms sufficient to add the buttons,
themselves, to the original Acrobat form-with-
layers. (If not, you may want to read my book
Creating Acrobat Forms; buy several copies!)

We are going to add appropriate actions to these
buttons.

Next Page ->

The zip file for this issue has
three versions of this sample:

• Layers Demo 1 is the Acrobat
file with no buttons.

• Layers Demo 2 has the
buttons with actions
attached to them.

• Layers Demo 3 is the final
form with functioning
buttons.

Acumen Journal: Acrobat User 6

Acrobat Layers

The Set Layer
Visibility Action Acrobat 6 added a new action to those you may attach to a form field: Set layer visibility.

This action sets the visibilities of all layers to whatever they were at the time you
attached the action to the form field.

Thus, to create a Show 1 button, we would do the following (assuming the basic button
has already been created):

1. Expose the Layers pane.

2. Set the visibility of the document’s layers to match what a button click should later
do. For our Show 1 button, we want to make Layer 1 visible and Layer 2 invisible.

3. Select the Button tool
in the Forms toolbar.

4 Double-click on the
Show 1 button. (In the
sample file, this button is
named “btnShow1.”)

 Acrobat will present you with the Button
Properties dialog box (shown at right).

Next Page ->

Acumen Journal: Acrobat User 7

Acrobat Layers

5. In the Trigger pop-up menu, select Mouse Up.

6. In the Actions panel, select Set layer Visibility.

7. Click on the Add button. (This is hidden by
the Action menu in the illustration at right.

8. Click on the Close button.

That’s it That’s all we need to do. Return to the Acrobat
Hand tool and you’re done. Now, whenever
you click on the Show 1 button, Acrobat will
return the visibility of the documents layers to
what they were when you attached the action
to the button: Layer 1 visible, Layer 2 hidden.

For practice, you may wish to start with the file
layers Demo 2 and add the appropriate actions to
the three buttons.

(You can start with Layers Demo 1 if you also want
to create the buttons, themselves.)

Next Page ->

Acumen Journal: Acrobat User 8

Acrobat Layers

JavaScript, OCGs,
and Layers Your buttons can do more sophisticated things with layers using a JavaScript. The

following discussion assumes you have at least basic knowledge of Acrobat JavaScript,
comparable to having read my book Extending Acrobat Forms With JavaScript.

OCG Objects In JavaScript, a layer is referred to as an Optional Content Group, that is, a collection of
text and graphics that may or may not be presented to the reader of the Acrobat file.
Acrobat JavaScript uses an OCG object to represent one of the OCGs—that is, one of
the layers—in an Acrobat document.

OCG Object Properties OCG objects have only two properties visible to JavaScript:

name (String) The label assigned to this layer. This will be the same as the name
associated with this layer in the Layers pane.

state (Boolean) This indicates whether the layer is visible (true) or invisible
(false). Changing this property changes the visibility of the layer.

doc.getOCGs(pageNum) You can find out what layers the current document contains with the Doc object’s
getOCGs method. This takes an optional page number as its argument and returns
an array containing the OCG objects on that page; if the page number is omitted,
the method returns all the OCG objects in the document. If there are no layers in the
document, getOCGs returns a null. Next Page ->

Acumen Journal: Acrobat User 9

Acrobat Layers

A Multi-Language
Document Let’s use

the Acrobat
JavaScript OCG
mechanism
to implement
the bilingual
document
pictured at
right.

This document
was created
in Adobe
Illustrator with
two text blocks, each in its own layer (named “English” and “Spanish”), one atop
the other.

I exported the document to a PDF file, preserving the layers, and then in Acrobat
added the English/Spanish language button in the lower-left corner. Clicking on the
button toggles between the English and Spanish layers.

We are going to look at the JavaScript attached to the button’s Mouse Up event. This
is the script that reverses the visibility of the document’s two layers.
 Next Page ->

This document is included
in this month’s zip file as
Multi-Language.pdf.

Acumen Journal: Acrobat User 10

Acrobat Layers

Getting to the
JavaScript We get to the button’s JavaScript in the usual fashion:

• Select the button tool in the Form toolbar.

• Double-click on the button (whose name is btnLanguage).

 This will yield the Button Properties dialog box, below right.

• Going to the dialog box’s Actions pane,
we can see that the Mouse Up event has a
JavaScript attached to it.

• Select the “Run a JavaScript” entry associated
with Mouse Up and click on the Edit button
at the bottom of the panel.

Acrobat will present you with a text editing
window containing the JavaScript. You may edit
the code, resize the window, and otherwise
treat it as though it a standard text editing
window.

Next Page ->

Acumen Journal: Acrobat User 11

Acrobat Layers

The JavaScript Here’s the JavaScript that does the deed:

var OCGs = this.getOCGs() // Get array of OCGs

OCGs[0].state = !OCGs[0].state // Reverse the OCGs’ states
OCGs[1].state = !OCGs[1].state

// Now let’s change the button’s label; start by getting the form:
var btnLabel = event.target.buttonGetCaption()

if (btnLabel == “English”)
 event.target.buttonSetCaption(“Spanish”)
else
 event.target.buttonSetCaption(“English”)

Step-by-Step Let’s look at this JavaScript in detail.

var OCGs = this.getOCGs()

The snippet starts by calling the getOCGs method in the current (“this”) document.
The resulting array of OCG objects is assigned to the variable named OCGs.

The OCGs array will have two entries, representing the two layers in our document.
We can access these layers as OCGs[0] and OCGs[1], in usual array fashion.
 Next Page ->

“OCGs” is pronounced
“O-C-Geez,” by the way.

Acumen Journal: Acrobat User 12

Acrobat Layers

Reverse the OCG states OCGs[0].state = !OCGs[0].state
OCGs[1].state = !OCGs[1].state

We now reverse the state property of each layer; the visible layer will become hidden
and vice versa. We do this using the “!” operator (pronounced “not”). The not operator
reverses the value of a Boolean; true becomes false and false becomes true.

Thus, the statement

 OCGs[0].state = !OCGs[0].state

sets the value of the state property of the 0th OCG in the OCGs array to the opposite of
its current value, thus reversing the visibility of the corresponding layer.

We do this for both of the OCG objects in OCGs, reversing the visibility of both the
document’s layers.

Get the button label var btnLabel = event.target.buttonGetCaption()

Now we must change the label of the choose-your-language button. If we just made
the English text visible, we want to change the button’s label to “Spanish,” and vice versa.

We start by getting the language button’s current label using the Acrobat Form
object’s buttonGetCaption method. This method returns a string containing the
button’s label text. Note that we can use event.target to refer to the language button,
since the button was the source of the Mouse Up event that triggered this script. We
place the label text into the variable btnLabel. Next Page ->

Acumen Journal: Acrobat User 13

Acrobat Layers

Reverse the button label if (btnLabel == “English”)
 event.target.buttonSetCaption(“Spanish”)
else
 event.target.buttonSetCaption(“English”)

The script ends with an if…else block that reverses the button label: “English”
becomes “Spanish” and vice versa.

The if clause looks to see if the value of btnLabel (the string variable containing
the button label text) is “English.” If so, we set the button’s label (using the
buttonSetCaption method) to “Spanish.”

If the value of btnLabel is not “English,” then we set the label to “English.”

Finding a
Particular Layer The above script takes advantage of the fact that we know that our Acrobat document

has only two layers. We didn’t actually look for the layer named “English” or “Spanish”;
we just reversed the state of the layers without regard to which was which.

Somewhat surprisingly, Acrobat JavaScript provides no way to directly ask for the OCG
object representing a particularly-named layer; you need to obtain the array of all layers
and then go through the OCG objects in the array, looking for the layer you want. For
example, to find a layer named “Layer1,” you would do something like this:

Next Page ->

Acumen Journal: Acrobat User 14

Acrobat Layers

var ocgs = this.getOCGs()
var theOCG = null

for (var i = 0; i < ocgs.length; i++) {
 if (ocgs[i].name == “Layer1”) { // Is ocgs[i] our layer?
 theOCG = ocgs[i] // Yes: set theOCG...
 break // ...and then leave loop
 }
}

This script finishes with the variable theOCG being equal to either the named layer’s
OCG object or to null, if there is no such layer.

We are going to be brief in our examination of this snippet of JavaScript, but in broad
outlines, here’s how it works:

var ocgs = this.getOCGs()
var theOCG = null

Create a pair of variables:

• ocgs contains the array of OCG objects in this document, as in our earlier JavaScript.

• theOCG will be assigned the OCG object associated with our target layer, if we find
it. Note that theOCG is initially set to null.

Next Page ->

Acumen Journal: Acrobat User 15

Acrobat Layers

for (var i = 0; i < ocgs.length; i++) {
 ...
}

Start up a for loop that sets a variable i to 0 and repeats the loop as long as i is less
than the length of the ocgs array. At the end of each time through the loop, we shall
increment i.

We didn’t talk about loops in the JavaScript book, so you will need to research the for
loop, if you haven’t seen it before. Any book on JavaScript for the Web will discuss the
for loop and its relatives.

if (ocgs[i].name == “Layer1”) { // Is ocgs[i] our layer?
 theOCG = ocgs[i] // Yes: set theOCG...
 break // ...and then leave loop
}

Each time through the loop, we check to see if the name of entry i in the ocgs array is
“Layer1.” If it is, we set theOCG to the entry and then exit from the loop with the break
command. Otherwise, for increments i and then executes this set of statements again.

By the time we exit from the loop, theOCG will be set to the OCG object whose name
is “Layer1.” If we never found such a layer, then theOCG will still be null.

A Caveat By the way, a name can be shared by several layers in an Acrobat file. It is up to you,
when you create the file in Illustrator or InDesign, to make sure that layer names are
unique within that file.
 Next Page ->

Acumen Journal: Acrobat User 16

Acrobat Layers

Layers R Good Layers are one of my favorite new parts of Acrobat
6. They have many obvious uses and make easy a
range of effects that were difficult before. And, as
we have seen, it is relatively easy to control their
visibilities from within an Acrobat form.

There are some subjects I haven’t touched on
in this article, such as the commands available
through the menu attached to the Layers pane.

But, alas, we’re out of space and time.

Later, perhaps.

Return to Main Menu

PostScript Tech

Acumen Journal: PostScript Tech 17

Binary Tokens
PostScript is usually generated as an ASCII language; a PostScript program is composed
of a stream of ASCII characters. Adobe’s decision to have PostScript be ASCII-encoded
has had many benefits; in particular, it makes the language portable across all platforms
and transmission methods. It has also made it possible to write PostScript programs by
hand.

On the other hand, it does make the language relatively verbose. Sending a one-byte
integer value to the interpreter can require transmitting up to four bytes of ASCII (as in

“100” followed by a delimiter).

All PostScript Level 2 and Level 3 devices support a rarely-discussed binary encoding
called Binary Tokens. This allows a PostScript program to be send to the interpreter as
a stream of binary commands and
values. A binary-encoded PostScript
program is unreadable to the eye and
you certainly could not write such a PostScript program by hand; these are definitely
appropriate only to machine-generated PostScript.

On the other hand, binary tokens are very compact. A PostScript program expressed as a
stream of binary tokens is, on average, the most compact form of that program, short of
applying compression.

This month we shall look at how to use binary tokens in a PostScript program.

Next Page ->

145 211 146 67 136 12 146 140 146 149

Acumen Journal: PostScript Tech 18

Binary Tokens

PostScript Encodings Modern PostScript supports three different methods by which a PostScript program may
be expressed:

• ASCII Encoding - This is the most common encoding used for PostScript files. The
program consists of a stream of ASCII characters, as in “100 100 400 100 rectfill”.

• Binary Tokens - This is a compact version of the PostScript language that allows each
PostScript object in the stream to be expressed as a one-byte “token” followed by one
or more bytes of value.

• Binary Object Sequences - This interesting encoding allows a set of executable
PostScript to be sent to the interpreter as a stream of eight-byte PostScript objects; in
effect, the driver generates the actual PostScript objects that the interpreter actually
uses internally.

Mixing Encoding A PostScript stream can contain any mixture of the three encodings that is useful to the
driver. A program can start with ASCII, continue with some binary tokens, follow with
a binary object sequence or two, followed by more ASCII, etc. The PostScript scanner
keeps it all straight according to the values of the incoming bytes in the stream:

• Incoming byte values 0-127 indicate ASCII PostScript

• 128-131 specify different types of Binary Object Sequences

• 132-149 indicate different binary tokens

Next Page ->

Binary Object Sequences
aren’t used, as far as I know.
They are inconvenient to
generate and don’t offer
much of a performance
benefit.

Acumen Journal: PostScript Tech 19

Binary Tokens

Binary Tokens A binary token represents a single PostScript object: a single integer, real number,
string, name, etc. Each binary token starts with a
one-byte “Token Type” that indicates what kind of
PostScript object this token represents. The token type
is followed by one or more bytes that indicate the
value of the object.

A binary token is usually much more compact than its ASCII equivalent. For example,
in ASCII PostScript, the boolean object false is represented by six bytes: the characters
f-a-l-s-e and a trailing delimiter. As a binary token, false is represented by
two bytes: a byte of value 141 (the token type that indicates a boolean
object) followed by a byte of value zero (indicating false).

Next Page ->

Token
Type

Token Value
n bytes

141 0

Acumen Journal: PostScript Tech 20

Binary Tokens

Token Types The possible token type values—and the data types they specify—are as follows:

132, 133 32-bit integer, high/low-byte first. The token is followed by the integer data.

134, 135 16-bit integer, high/low-byte first.

136 8-bit signed integer

137 16- or 32-bit fixed point number. The bytes that follow indicate the details,
such as the number of bits and the position of the decimal point.

138, 139 IEEE real number, high/low byte first

140 Native real number. This is for PostScript implementations that reside on
the same system that is generating the PostScript code.

141 Boolean. The token is followed by a single byte indicating the boolean
value. A zero indicates false, as usual.

142 Short string (fewer than 256 characters). The token is followed by a one-
byte string length and then the string’s characters.

143, 144 Long strings (up to 64k characters). The token is followed by a two-byte
length (high byte/low byte first) followed by the string’s characters.

145, 146 Literal/Executable name taken from the System Name Table (see below).

149 Homogeneous number array. (See below.)

Next Page ->

Acumen Journal: PostScript Tech 21

Binary Tokens

Thus, the number 2,000 can be sent to the PostScript interpreter as a three-byte
sequence consisting of the byte 133 (indicating a two-byte integer), followed by the
actual two-byte value for 2,000. This is half the size of the ASCII “2000” plus delimiter.

Most of the entries (integers, strings, etc.) in the preceding page’s table are reasonably
clear in their use and interpretation. Names and homogeneous number arrays
require some additional discussion, however.

Names as Binary Tokens Token types145 and 146 denote names. The former indicates a literal name, that the
interpreter will put on the operand stack; in ASCII PostScript, you would indicate this
with a preceding slash, as in “/Times-Roman.” Token type 146 specifies an executable
name; the interpreter will look this name up on the dictionary stack and take some
appropriate action.

In both cases, the byte following the token is
an index into the System Name Table. This is
a predefined table of names that PostScript
maintains internally. Appendix F in the
PostScript Language Reference Manual displays
the contents of this table. Any of the first 256
entries in this table can be represented as a
two-byte binary token: token type 145 or 146,
followed by the one-byte index into the table
indicating the name you want.
 Next Page ->

Acumen Journal: PostScript Tech 22

Binary Tokens

For Example… Consider the following common piece of PostScript code, amounting to 43 characters
of ASCII, including the trailing delimiter:

 /Times-Roman findfont 12 scalefont setfont

This could be expressed as the following stream of binary tokens:

145 This is the token type for a literal name; the next byte must be an index
into the System Name Table.

211 This is the position of the name /Times-Roman in the System Name Table.

146 This is the token type for an executable name.

67 This is the position of the name findfont in the System Name Table.

134 12 The token type indicates an 8-bit integer. The byte following the token
type is the value of that integer, 12.

146 140 The executable name scalefont.

146 149 The executable name setfont.

This series of binary tokens is 10 bytes long, less than ¼ the size of the ASCII version.

Next Page ->

145 211 146 67 136 12 146 140 146 149
So far, I’m being completely
diagrammatic in depicting
our binary tokens. Patience.
We’ll see some actual binary-
encoded PostScript code
shortly.

Acumen Journal: PostScript Tech 23

Binary Tokens

Homogeneous
Number Arrays Token type 149 specifies that the bytes that follow are a homogeneous number array;

this is the binary token representation of an array of numbers, all of which are the
same type: fixed point numbers, integers, real numbers.

A homogeneous number array (“HNA” from now on)
is made up of a four-byte header followed by the
numeric data for the array’s contents.

HNA Header The header contains three components:

• The one-byte token type 149, indicating that
what follows is a homogeneous number array.

• A one-byte code, called the representation code,
that specifies the type of numbers that make up
the array.

• A two-byte length indicating the number of
entries in the array.

Next Page ->

}
Header

Data

Token type

Representation

Array length

149

Acumen Journal: PostScript Tech 24

Binary Tokens

Representation Byte The second byte in the HNA header is a code that indicate what kind of number
makes up the array. The values this byte may have are:

0 – 31 32-bit fixed point number. The exact value on the range 0–31 indicates the
position of the decimal point; 0 indicates the decimal point is to the right
of bit 0, that is, the number is a 32-bit integer.

32 - 47 16-bit fixed point number. As with the 32-bit values, the specific value indicates
the position of the decimal point. A representation value of 32 indicates
the array will be made up of 16-bit integers.

48 IEEE real number.

49 Native real number. As before, this is for cases where the PostScript interpreter
and the PostScript source share an underlying architecture that has some
native idea of a real number.

128–177 These values duplicate the meanings of 0-49, but indicate the numbers in
the array will all be low-byte-first.

We shall see an example of a homogeneous number array in a moment.

Next Page ->

Acumen Journal: PostScript Tech 25

Binary Tokens

Trying It Out Binary tokens are not human-readable, so they would normally be appropriate only
for PostScript generated by a driver. Still, it would be nice to play with them a bit.

Here’s one way to do it: express the binary tokens as ASCII hex and execute them
through the ASCIIHexDecode filter.

ASCII-Encoded Tokens For example:

.1 1 .6 setrgbcolor
currentfile /ASCIIHexDecode filter cvx exec
95200004 0064 0258 012c 0064
9238 9280
8800 9296
9281 > % The “>” marks end-of-data for ASCIIHexDecode
showpage % Here we are back to normal, ASCII PostScript

The ASCII-encoded binary tokens above are the equivalent of the following ASCII PostScript:

[100 600 300 100]
dup rectfill
0 setgray
rectstroke

This produces a filled, stroked rectangle, as
above right. Next Page ->

Acumen Journal: PostScript Tech 26

Binary Tokens

Step-by-Step Here’s what’s happening, in detail:

.1 1 .6 setrgbcolor

Set the current color to a light green. I did this
in ASCII PostScript just because I didn’t want to
hand-code a set of IEEE reals.

currentfile /ASCIIHexDecode filter cvx exec

Attached the ASCIIHexDecode filter to currentfile, convert the resulting filtered
fileobject to executable, and execute it. We shall begin executing currentfile through
the ASCIIHexDecode filter; whatever follows exec will be converted from hexadecimal
to binary and then handed to the PostScript interpreter.

95200004 0064 0258 012c 0064

This is an ASCII-encoded homogeneous number array. The contents are:

95 This is the token type for an HNA. (This is 149 expressed as hex.)

20 The representation byte. Value 32 (that is, hexadecimal 20) indicates an
array of 16-bit integers

0004 This is the two-byte array length; we have an array of four numbers.

0064… The HNA header is followed by four 16-bit integers, the values 100, 600,
300, and 100,expressed in hex.
 Next Page ->

Acumen Journal: PostScript Tech 27

Binary Tokens

9238 9280 The HNA is followed by two executable names: dup and rectfill. Note that
“92” is token type 146, indicating an executable name. “38” and “80” are the
hexidecimal indices into the System Name Table for dup and rectfill.

8800 9296 This is the call to setgray. “88” is token type 136, indicating an 8-bit integer.
The byte following, “00,” specifies a value of 0. “9296” indicates the executable
name setgray.

9281 This is the executable name rectstroke.

> The greater-than symbol is the end-of-data marker for the ASCIIHexDecode
filter. This causes us to resume executing currentfile directly, rather than
through the filter.

showpage The program ends with a call to showpage expressed in ASCII PostScript.

Next Page ->

Acumen Journal: PostScript Tech 28

Binary Tokens

Mixed Formats I would like to demonstrate that PostScript can correctly interpret a combination of
ASCII PostScript and binary tokens. To do so, we’ll need to write a computer program
that creates a mixed-format PostScript stream; I am going to do this using, as my
programming language, PostScript, itself.

Below is a PostScript program that creates raw binary tokens mixed with ASCII
PostScript, writing the resulting mixed-encoding PostScript to %stdout:

(.5 1 .7 setrgbcolor) = % Write some ASCII PostScript

% Read some ASCII-encoded binary tokens
currentfile /ASCIIHexDecode filter 50 string readstring
8864 860258 86012c 8864 9280>
pop
= % Write raw binary tokens to stdout

(1 .5 .3 setrgbcolor)= % Write some more ASCII PostScript
(200 550 50 200 rectfill)=
(showpage)=

The above call to readstring reads our ASCII-encoded binary tokens through the
ASCIIHexDecode filter. The operator returns a string containing the raw binary tokens
(and the usual boolean on top).

We discard the boolean with a pop and then print the binary data to stdout with =.
 Next Page ->

Acumen Journal: PostScript Tech 29

Binary Tokens

The binary tokens in this case encode a call to rectfill:

100 600 300 100 rectfill

The resulting PostScript code sent to stdout is:

.5 1 .7 setrgbcolor
àdÜXÜ,àdíÄ
1 .5 .3 setrgbcolor
200 550 50 200 rectfill
showpage

When executed, this results in two filled rectangles
painted on the current page, as at right.

Note that this PostScript code never explicitly
switches between ASCII and binary token
“modes”; the encoding of the incoming
PostScript is implicit in the numeric range in
which each incoming byte lies.

Next Page ->

Acumen Journal: PostScript Tech 30

Binary Tokens

What’s it good for? Binary tokens are not at all useful for handwritten PostScript (except for experimentation,
as we do above). They can be very appropriate for driver output because they are
very compact. Some years back, I wrote an ASCII-to-binary-token converter that
allowed me to convert driver output from various sources to binary tokens. On average,
the binary token version of the PostScript output was about half the size of the original.
(Unfortunately, I can no longer find the source code or the executable for that
converter, so you’ll need to take my word on it.)

The only instance I know of binary tokens being used in a driver dates back to the
early 90s, when I was told by someone on the Adobe driver team that the AdobePS
driver for the old Macintosh OS generated binary tokens when you printed directly to
a PostScript device. If you printed to a PostScript file, the driver converted the binary
tokens to normal ASCII PostScript, which was saved to disk. In the nature of things,
I’ve not been able to confirm this directly, but it seems a reasonable approach to take.

I’d be curious to know if any other drivers—modern ones, preferably—are generating
binary tokens. Anyone know?

Return to Main Menu

Schedule of Classes, Aug – Oct 2004
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class
on the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-
wide. See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

 Acrobat Classes

PDF File Content
and Structure

Aug 30–Sep 2

Oct 11–15

PostScript
Foundations

Aug 2–6

Variable Data
PostScript Aug 9–13

Advanced
PostScript Aug 16–20

PostScript for
Support Engineers Sep 20–24

Jaws Development On-site only

Sorry there aren’t a lot of
classes scheduled through
July. I’ve an extremely busy
on-site schedule, so I can’t
conduct many open classes.

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate
sites. Clicking on a course name below will take you to the class description on the
Acumen Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
organization sign up for the same class.

 Registration ->

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Acumen Editor
Does PostScript The current version of Acumen Editor

now has features that let it be used in
Acumen Training PostScript classes.
In particular, the editor will pass your
PostScript file to Acrobat Distiller, Jaws
PDFCreator, or GhostScript, displaying
the resulting PDF file, if any.

There have also been some new fea-
tures (such as Block Comment) and the
usual round of bug fixes (and new bug
insertions, no doubt).

All future Acumen Training PostScript
classes are being taught using Acumen
Editor.

The current version of Acumen Editor is available on the Acumen Training Resources
page. The software requires Mac OS X 10.2 or later or Windows 98 or later.

Return to First Page

What’s New?

Acumen Journal: What’s New?

http://www.acumentraining.com/resources.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did reading it reduce
your mental acuity so that you no longer finish your sentences when speaking?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

System Name Table

Acumen Journal

Layers in Adobe Illustrator

Acumen Journal

Multi-Language Document

	btnMagMinus 6:
	btnMagMinus 5:
	btnMagMinus 3:
	btnNextPage:
	btnNextPg:
	btnHome:
	btnPrevView:

