
Table of Contents

The Acrobat User JavaScript: All/None-of-the-Above Checkboxes
Many questionnaires have items that require “All of the above”
and “None of the above” responses. This month we shall see how
to program interactive versions of these as Acrobat checkboxes.

PostScript Tech Setting text with a PrintParagraph routine
This month we write a procedure that takes a string of text and prints its contents between
specified left and right margins.

Class Schedule January, February, March, April

What’s New? The new PDF class is here
PDF File Contents and Structure 2 is now available.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 41 © 2006 John Deubert, Acumen Training					�

John Deubert’s Acumen Journal, January 2006

The Acumen Journal is back!

Now that the PDF File
Content and Structure 2
class is finished, the Journal
will be back on its roughly-
every-second-month
schedule. Thanks for your
patience last year.

Acrobat User

Acumen Journal: Acrobat User	 �

JavaScript: All- and None-of-the-Above Checkboxes
A former Acrobat class student recently asked me about a problem she wasn’t sure how
to solve. She was constructing a questionnaire as an Acrobat form; nothing too complex,
just a series of multiple-choice questions with checkboxes associated with each of the
answers. Many of the questions had “All of the above” and “None of the above” responses
for which she wanted the following behavior:

•	 Selecting “All of the above” would cause all of the item checkboxes to become selected.

•	 Selecting “None of the above” would deselect all of the item checkboxes.

•	 Selecting any item checkbox would deselect the
“None of the above” checbox.

•	 Deselecting any item checkbox would also
deselect the “All of the above” checkbox.

Play with the check boxes at right to see this set of
characteristics in action.

This is a relatively easy task, but it does require a set
of JavaScripts. Since All- and None-of-the-above
checkboxes are common in questionnaires, this
month’s article will examine how to reproduce this
behavior.

Next page ->

Example on Website

As usual, this month’s sam-
ple file is available on the
Acumen Training Resources
page. Look among the
Acrobat examples for All of
the above.zip.

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User	 �

All & None of the Above

The Project In this article, we shall implement the All/None
checkboxes for the questionnaire at right. This pdf
form has six checkboxes, named chkMeat, chkFruit,
chkGrain, chkLichen, chkAll, and chkNone.

All of these checkboxes have had their export values
set to the string “Yes.” Thus, setting a checkbox’s
value to “Yes” will select the box; setting the value
to any other string will unselect the box.

Assumptions This article assumes that you already know the basics of creating
Acrobat form fields, such as checkboxes. It also assumes that your
knowledge of Acrobat’s JavaScript is roughly equivalent to that
presented in my book Extending Acrobat Forms With JavaScript.
In particular, you should know how to attach a JavaScript to an
Acrobat form field.

Next page ->

Acumen Journal: Acrobat User	 �

All & None of the Above

Overview We are going to need to write three JavaScripts for this task, each attached to the
Mouse Up event of one or more checkboxes:

chkAll JavaScript
Check to see if chkAll has been selected and, if so, select all of the food
checkboxes and unselect chkNone.

chkNone JavaScript
Check to see if chkNone has been selected and, if so, unselect all of the other
checkboxes.

chkMeat, etc. JavaScript
This JavaScript, attached to all of the food item checkboxes, will look to see
if the Mouse Up’s checkbox is selected. If so, it will uncheck chkNone, since
if the checkbox is selected, then “None of the above” cannot be valid. If the
checkbox is not selected, the JavaScript will uncheck chkAll.

Checking & Setting
Field Values
event object All three of these Mouse Up scripts will need to check the value of the checkbox to which

they are attached. We shall do this with the predefined event object that is available for
use in all form field JavaScripts.

Next page ->

Acumen Journal: Acrobat User	 �

All & None of the Above

You may remember that that event.target is a reference to the form field that triggered
the JavaScript; in our case, this will be the checkbox that the user clicked. The value of
that checkbox is therefore available as event.target.value. If this value is the string “Yes”
(the checkbox’s export value), then the checkbox is selected; any other value indicates
the checkbox is unselected.

We can also assign a value to event.target.value to set or clear the checkbox:

	 event.target.value = "Yes"

The above line sets the checkbox’s value to “Yes”, turning the checkbox on. Setting the
field’s value to anything other than the field’s export value will unselect the field, clear-
ing the checkbox.

Attaching a JavaScript
to a Form Field To briefly review how to attach a JavaScript to a form field:

1.	 Double-click on the field with either the appropriate form field tool
or (more generally conveniently) the Object Selection tool (in the
Advanced Editing toolbar).

	 Acrobat will present you with the Check Box Properties dialog box (next page).

2.	 Click on the Actions tab and select the Mouse Up event.

3.	 In the Action pop-up window, select Run a JavaScript.

Next page ->

Acumen Journal: Acrobat User	 �

All & None of the Above

4.	 Click the Add button; Acrobat will present you with a
text field into which you may type your JavaScript.

5.	 Click the Close button to return to your Acrobat page.

The JavaScripts
“All of the Above” As we discussed earlier, the chkAll checkbox needs a

JavaScript that does the following:

•	 Check to see if the checkbox is selected, that is, if its value is “Yes.”

•	 If so, do the following:

-	 Select all of the food checkboxes.

-	 Turn off the None-of-the-above checkbox.

Here’s the JavaScript for the chkAll field:

if (event.target.value == "Yes")	 {	 	 // Checkbox selected?
	 this.getField("chkMeat").value = "Yes"	 // Turn on the items’
	 this.getField("chkFruit").value = "Yes"	 // checkboxes
	 this.getField("chkGrain").value = "Yes"
	 this.getField("chkLichen").value = "Yes"
	 this.getField("chkNone").value = "ABC"	 // Turn off “None”
}

Let’s look this in detail.										 Next page ->

Acumen Journal: Acrobat User	 �

All & None of the Above

Step-by-step if (event.target.value == "Yes")	 {
	 ...
	 ...
}

The first thing this script does is examine the value of the chkAll field to see if the value is
the string “Yes.” If so, then the user has just selected this checkbox and we need to turn
on all of the individual food checkboxes.

We test the state of the checkbox within a JavaScript if statement. You may remember
that the if keyword is followed in the script by two things:

•	 Parentheses containing a comparison

•	 One or more JavaScript statements in braces.

If the parenthetical comparison is true, then the statements in braces will be executed.

In our case, the clause in parentheses compares the value of the checkbox (obtained
through event.target.value) with the string “Yes”. If the comparison is true, we shall
execute all of the statements between the braces.

Remember that the two equal signs in the parentheses are the “is equal to” comparison.

Next page ->

Acumen Journal: Acrobat User	 �

All & None of the Above

this.getField("chkMeat").value = "Yes"

This is the first line between the braces, to be executed only if the if comparison is true.
This somewhat complicated-looking line sets the value of the chkMeat to “Yes,” selecting
it in the user interface. It is a condensed version of an action we might often carry out
with two lines of JavaScript:

	 var f = this.getField("chkMeat")
	 f.value = "Yes"

In the above lines, we get a reference to the form field named “chkMeat,” assigning the
reference to the variable f. We then assign the string “Yes” to the field’s value property,
which will “turn on” the checkbox.

In our actual code, we eliminated the temporary variable f; since this.getField returns a
Field object, we can immediately reference that returned field’s value property with:

	 this.getField("chkMeat").value

In our case, we addigned to this value the string “Yes.”

this.getField("chkFruit").value = "Yes"
this.getField("chkGrain").value = "Yes"
this.getField("chkLichen").value = "Yes"

In the same manner, we turn on the other three food group checkboxes…

this.getField("chkNone").value = "ABC"

…and then turn off the “None of the above” checkbox.
													 Next page ->

Acumen Journal: Acrobat User	 �

All & None of the Above

Again, note that to turn off a checkbox, we set its value to any string other than the
field’s export value. In our program, any string other than “Yes” would have served to
uncheck the field.

“None of the Above” The JavaScript for chkNone is similar in flavor to that for chkAll. It must:

•	 Check to see if the checkbox has been turned on.

•	 If so, turn off all the other checkboxes.

Here’s the code:

if (event.target.value == "Yes")	 {
	 this.getField("chkMeat").value = "No"
	 this.getField("chkFruit").value = "No"
	 this.getField("chkGrain").value = "No"
	 this.getField("chkLichen").value = "No"
	 this.getField("chkAll").value = "No"
}

This is similar enough to the previous script that I shall not step through it in detail.
However, note that the comparison clause in the if operator’s parentheses is identical
to our that in our previous script. The phrase “event.target.value” will return the value of
whatever form field triggered the script. In our previous script, this clause evaluated to
the value of chkAll; in this script, the same clause will return the value of chkNone.

Next page ->

Acumen Journal: Acrobat User	 10

All & None of the Above

“Food Group” Scripts Finally, each of the individual food group checkboxes needs to have a JavaScript that
does the following:

•	 Check to see if the checkbox is selected.

•	 If so, turn off the None-of-the-above checkbox.

•	 If not, turn off the All-of-the-above checkbox.

The script can be exactly the same for all of these, since we want them to behave in
exactly the same manner. Here’s our JavaScript:

if (event.target.value == "Yes")	 {
	 this.getField("chkNone").value = "No"
}
else	{
	 this.getField("chkAll").value = "No"

}

This is the same if comparison we had before, except that now we have an else clause. If the
parenthetic comparison is true, then the JavaScript line following the if will be executed;
otherwise, the line following else will be executed.

Next page ->

Acumen Journal: Acrobat User	 11

All & None of the Above

Note that I could have left out the braces after the if and else, since there’s only a single
line of conditionally-executed code in each case. Thus, the above script could have been:

if (event.target.value == "Yes")
	 this.getField("chkNone").value = "No"
else
	 this.getField("chkAll").value = "No"

This is a bit more streamlined, but some people prefer to retain the braces for clarity.

Done That’s all there is to it. The method we are using is a bit tedious if you have a lot of form
fields that need to be turned on or off. One technique for reducing the work in that
case would be to put the food field names into an array and then run through the array,
turning each field on or off as appropriate.

However, we’ll do that another time.

Return to Main Menu

Acumen Journal: PostScript Tech	 12

Setting Text With a PrintParagraph procedure
At the base of PostScript’s unique usefulness as a graphics and printer language is the
fact that it is, in fact, a complete programming language. That being the case, there’s
nothing you can’t do, one way or another, in PostScript.

Many people, particularly in the variable data printing field, have taken advantage of
this characteristic to do very elaborate document layout entirely in PostScript. They write
PostScript programs that read data from the input stream and then construct and print
a set of documents based on that data.

In the next few months, we are going to look at some PostScript programming techniques
that are common to this kind of document layout. We shall start with a common task:
setting a paragraph of text between specified left and right margins. We shall define a
PrintParagraph procedure that takes as its argument a string containing a paragraph of
text; starting at the current point, PrintParagraph will print the contents of that string,
breaking lines between words as appropriate to the margins.

If you have taken the Variable Data PostScript class, this will look familiar; we use a very
similar procedure in that class.

Next page ->

PostScript Tech

Acumen Journal: PostScript Tech	 13

A PrintParagraph Procedure

But First: PrintWord Let’s start with a simpler case: let’s define a PrintWord procedure. This procedure takes as
its argument a string containing a single word, and does the following:

•	 Decide whether that word, if printed at the current point, would extend past the right
margin.

•	 If so, move the current point to the beginning of the next line; if not, leave the
current point where it is.

•	 Print the word.

Called repeatedly with a series of words,

(This) PrintWord (text) PrintWord (is) PrintWord
(printed) PrintWord (between) PrintWord
(the) PrintWord (margins) PrintWord

PrintWord will print the complete text between specified left and right margins, as in the
box at right, above.

If you have taken either the PostScript Foundations or the PostScript for Support Engineers
class, you will have seen this procedure before, since we step through a similar example
on the second day of both those classes.

Next page ->

This text is
printed between
the margins

Acumen Journal: PostScript Tech	 14

A PrintParagraph Procedure

PrintWord’s Tasks Here is what PrintWord must do, given a one-word string:

•	 Calculate the width that string would have on the page if it were printed.

•	 Add the string’s width to the current point’s x position.

•	 Compare that sum to the right margin.

•	 If the sum is greater than the right margin, move the current point to the start of the
next line.

•	 Print the string.

Our PrintWord definition will use a set of variables to record the margins and the
distance between lines; it will also define a utility procedure that moves the current
point to the beginning of the next line of text.

Our sample program will draw vertical lines marking the positions of the margins and
then print a block of text between those margins using PrintWord.

Let’s look at the code.

Next page ->

Acumen Journal: PostScript Tech	 15

A PrintParagraph Procedure

The Code
Define our variables /font /Helvetica def	 	 % The font we’ll use...

/ptSize 15 def	 	 	 % ...and the point size
/leading 18 def	 	 	 % The distance from one line to the next
/lm 80 def	 	 	 	 % Left margin
/rm 300 def	 	 	 	 % Right margin

Two procedure defs % The following procedure moves the current point to the start
% of the next line; see the text for a detailed run-through
/newline % --- => ---
{ lm currentpoint exch pop leading sub moveto } bind def

% Here’s our PrintWord
/PrintWord % (word) => ---
{	 dup stringwidth pop	 % Get the string’s width
	 currentpoint pop	 	 % Get our current x position
	 add	 	 	 	 	 % Add them together
	 rm gt	 	 	 	 % Compare the sum to the right margin
	 { newline } if	 	 % Do a newline if width + x > rm
	 show () show		 	 % Print the word and a trailing space
} bind def

Next page ->

Code on Website

As usual, the code for this
month’s example is on the
Acumen Training Resources
page. Look among the
PostScript examples for
PrintParagraph.zip. That file
contains two PostScript
files, PrintWord.ps and
PrintParagraph.ps, the two
sample programs from this
issue.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech	 16

A PrintParagraph Procedure

Now let’s draw the page % Draw our margins
lm 0 moveto 0 792 rlineto
rm 0 moveto 0 792 rlineto
1 0 0 setrgbcolor
stroke

% Set the font and initialize the current point
0 setgray
font ptSize selectfont
lm 700 moveto

% Draw the text
(Twas) PrintWord (brillig) PrintWord (and) PrintWord (the) PrintWord
(slithy) PrintWord (toves) PrintWord (did) PrintWord (gyre) PrintWord
(and) PrintWord (gymbol) PrintWord (in) PrintWord (the) PrintWord
(wabe.) PrintWord

showpage

Let’s look at this in detail.

Next page ->

Acumen Journal: PostScript Tech	 17

A PrintParagraph Procedure

The Code, Step-by-Step
Variable Definitions /font /Helvetica def

/ptSize 15 def
/leading 18 def
/lm 80 def
/rm 300 def

We start by defining some variables we shall use over the course of the program. The
font and ptSize variables are, of course, the font and size of the text we shall print. These
are for convenience only, since they are not directly used by PrintWord.

The last three variables are used by either PrintWord or the newline utility routine:

leading	 The distance from one baseline to the next in our block of text.

lm	 The x coordinate of the left margin.

rm	 The x coordinate of the right margin.

The newline Procedure /newline % --- => ---
{

The newline procedure moves the current point from its current position to the beginning
of the next line. Specifically, it moves the current point to the left margin at a y position
leading points lower than the current y position.

Next page ->

Acumen Journal: PostScript Tech	 18

A PrintParagraph Procedure

lm						 % stack: 80

The procedure starts by pushing the value of lm on the stack; eventually, this will be our
new x value.

currentpoint exch pop		 % stack: 80 y

We then execute the currentpoint operator, which pushes the current x and y values on
the stack, in that order. The y value we want to decrement by leading; we have no use for
the x at all, so we discard it with an exch (which brings it to the top of the stack) and a
pop (which throws it away).

We now have the left margin value on the bottom of the stack and our current y value
on the top.

leading sub				 % stack: 80 y-18

We subtract leading from our y value. We now have on the stack the x and y values for
the beginning of the next line: an x value equal to the left margin and a y value 18 less
than the current y value.

	 moveto
} def

Our newline procedure finishes by doing a moveto, moving the current point to the
beginning of the next line.

Next page ->

Acumen Journal: PostScript Tech	 19

A PrintParagraph Procedure

PrintWord /PrintWord % (word) => ---
{
	 dup				 % stack:(wrd) (wrd)

PrintWord takes a single argument: a string containing a word of text to be printed
somewhere between the margins. We need to do two things with that string: we need
to determine its width, so we can decide whether it fits on the current line, and then we
need to print it.

Since both of these activities will consume the string, our PrintWord definition begins
with a pop, giving us two instances of the string on the stack.

stringwidth pop		 % stack: (wrd) wid

The stringwidth operator consumes the top instance of our string argument, returning
the x and y offset that would be applied to the current point if we were to print that
string.

The x value is the number we want, since it will represent the width of the printed string.
We have no use for the y offset, which will be zero in any case, since our text prints
horizontally. (That’s an assumption, of course, but I’ll leave generalizing the procedure as
an Exercise for the Student.) We discard the y value with a pop, leaving the text’s width
on top of the stack.

Next page ->

Acumen Journal: PostScript Tech	2 0

A PrintParagraph Procedure

currentpoint pop		 % stack: (wrd) wid x

We want to add the text’s width to our current x position, which we obtain with
currentpoint. This operator leaves both the x and y values on the stack; we have no use
for the latter, so we discard it with a pop.

add rm gt			 % stack: (wrd) bool

We add together the text width and the current x and compare the sum to our current
right margin, leaving a Boolean true on the stack if the sum is greater than rm.

If this boolean is true, it means the word does not fit on the current line, so we need to
move the current point to the beginning of the next line.

{ newline } if		 % stack: (wrd)

To do this, we push a procedure containing a call to newline on the stack and then
execute the if operator. If the Boolean returned by gt is true, then if executes newline,
moving the current point to the start of the next line.

 show () show
} bind def

One way or another, the current point is now at the position on the page where our
word should be printed; it is either at the start of the next line or has been left where it
was. All we need to do now is print the string, which is all that is left on the stack.

 We finish our PrintWord procedure by printing the string with show. We then print a
trailing space character to separate this word from the next word in our block of text.
													 Next page ->

Acumen Journal: PostScript Tech	2 1

A PrintParagraph Procedure

Draw the page We finally put some marks on the page.

lm 0 moveto 0 792 rlineto
rm 0 moveto 0 792 rlineto
1 0 0 setrgbcolor
stroke

First we draw two vertical, red lines, indicating where the left and right margins are.

0 setgray
font ptSize selectfont
lm 700 moveto

We return our color to black, set our font, and move the current point to an initial posi-
tion on the page.

(‘Twas) PrintWord (brillig) PrintWord (and) PrintWord
(the) PrintWord (slithy) PrintWord (toves) PrintWord
(did) PrintWord (gyre) PrintWord (and) PrintWord (gymbol) PrintWord
(in) PrintWord (the) PrintWord (wabe.) PrintWord

Finally, we call PrintWord once for each word in our
block of text. The result is to print the text with line
breaks as needed to remain between the specified
margins.

Next page ->

Twas brillig and the slithy toves
did gyre and gymbol in the
wabe.

Acumen Journal: PostScript Tech	22

A PrintParagraph Procedure

PrintParagraph Now let’s extend our work to print an entire paragraph at a time. Our PrintParagraph
procedure will take from the stack a string containing an entire paragraph’s text and
print the text between the left and right margins. Thus, the following line:

(This text is printed between the margins) PrintParagraph

will print as at right.

This will be simpler than it sounds, since we can use our earlier
PrintWord procedure to do the line breaks. PrintParagraph needs
only parse individual words out of the string and hand them to PrintWord.

Next page ->

This text is
printed between
the margins

Acumen Journal: PostScript Tech	23

A PrintParagraph Procedure

The search operator We shall use the PostScript search operator to extract the individual words from the string.

 (src) (tgt) search	 => (post) (tgt) (pre) true
	 	 	 	 	 => (src) false

The search operator looks for the first instance of a target string within a source string.
If it fails to find such an instance, the operator returns the source string again and a
Boolean false, indicating the failure.

If it finds an instance, it returns the following (from the bottom of the stack to the top):

(post)	 All of the source string that comes after the found instance of the target.

(tgt)	 The target string again.

(pre)	 All of the source string that comes before the found instance of the target.

true	 A Boolean indicating an instance of the target was found.

This is a very useful order for the return values. It makes it quite easy to print the pre
string (which will be a single word in our case) and then immediately do another search
on the remainder of the string.

Next page ->

Acumen Journal: PostScript Tech	24

A PrintParagraph Procedure

The Code Here is our new program, abbreviating the parts we saw earlier:

/font /Helvetica def	 	 /ptSize 15 def	 % Font and point size
/leading 18 def	 	 	 	 	 	 	 % Dist. between lines
/lm 80 def	 	 	 	 /rm 300 def	 	 % Margins

%*** newline and PrintWord definitions go here ***

/PrintParagraph % (paragraph) => ---
{ ()	 	 	 	 	 	 % This is our word delimiter
 { search exch PrintWord	 % Loop: extract and print a word
 not { exit } if	 	 % Exit from the loop if done
 } loop	 	 	 	 	 % Otherwise, do it again.
 newline	 	 	 	 	 % Do a newline afterward
} bind def

0 setgray font ptSize selectfont lm 700 moveto

% Print the entire paragraph with a single call to PrintParagraph
(Twas brillig and the slithy toves did gyre and gymbol in the wabe.)

PrintParagraph

Next page ->

Acumen Journal: PostScript Tech	25

A PrintParagraph Procedure

Step by Step… /font /Helvetica def
/ptSize 15 def
...
/newline
{
	 ...
} bind def

/PrintWord
{
	 ...
} bind def

The first part of our program is identical to our earlier PrintWord example; it defines a
handful of variables and the newline and PrintWord procedures.

/PrintParagraph % (paragraph) => ---
{	 ()

PrintParagraph will be called with the stack holding a string containing a paragraph
of text. The definition begins by pushing onto the stack a string containing a single
space. This will be the target string for our eventual call to search; the string passed as an
argument will, of course, be the source string for search.

Next page ->

Acumen Journal: PostScript Tech	26

A PrintParagraph Procedure

{ ... } loop
PrintParagraph is built around a loop loop. Each time through this loop, we shall:

•	 Search the remaining source string for a space character

•	 Print everything that came before the space (a single word)

•	 Check to see if we are finished and exit the loop if so.

Remember the loop is initially called with our original string argument on the stack and
a single-space string above that.

search

The first thing we do in our loop is call search, to find the next word in our source string.
As we said eariler, search returns on the stack one of two sets of data:

-	 If the target string is found:	 (post) (tgt) (pre) true

-	 If the target is not found:		 (src) false

Note that in either case, the next word to be printed is the second item on the stack,
immediately under the boolean. (The word is either the text that came before the space
character or the original source string itself, if there was no space.)

exch PrintWord

This brings the word to the top of the stack and hands it to PrintWord, which prints the
string, wrapping to the next line, if necessary.

Next page ->

Acumen Journal: PostScript Tech	27

A PrintParagraph Procedure

The next thing to do is examine the Boolean to see if we are done:

not { exit } if

Since the Boolean returned by search is false if no space character was found, we
reverse the Boolean with a not and then exit the loop if the reversed Boolean is true.
Since a failed search leaves only the source string (consumed by show) and the Boolean
(consumed by if) on the stack, the stack will be empty when we leave the loop; we have
no clean-up to do.

} loop

If the Boolean returned by search is true, meaning it found a space character, then we do
the loop again. Note that we will have consumed the Boolean, leaving on the stack the
remainder of our source string and our single-space target string, exactly what we need
for the search operation the next time through the loop.

The loop will proceed through each space character in the source string, each time
printing the word that preceded that space, until the end of the string, at which point
we exit the loop.

 newline

Having exited the loop, PrintParagraph executes a final newline, because I wanted the
procedure to leave the current point at the beginning of the next line.

Next page ->

Acumen Journal: PostScript Tech	28

A PrintParagraph Procedure

Final Thoughts Setting text and doing (non-wysiwyg) page layout in PostScript has a long history.
Indeed, in the Long Ago Past, when I worked at Adobe, there were no applications or
drivers that generated PostScript, so the only way we could produce documents was
with hand-written code, using procedures similar to PrintParagraph.

In a future issue, we shall look at how to embed formatting commands (such as explicit
line breaks) within the paragraph.

Return to Main Menu

Schedule of Classes, January–April 2006
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class on
the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student.	 Registration Info

PDF File Content
and Structure 1

Feb 27–Mar 2

PDF File Content
and Structure 2

Jan 16–19 Apr 3–6

PostScript
Foundations Jan 30–Feb 3

Variable Data
PostScript

Advanced
PostScript Mar 13–17

PostScript for
Support Engineers Feb 13–17

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule�

New
!

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF2.html
http://www.acumentraining.com/Descr_TechPDF2.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
organization sign up for the same class. 		

							 						 Registration ->

												 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule�

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

PDF File Content
& Structure 2

Is Here! The pilot pdf File Content and Structure 2 class ran at Adobe Systems last December. The
first publically-available class is scheduled for January 16–19 and, of course, the class is
available for on-site. The list of topics are:

Overprinting			 File Specification		 Multibyte fonts
Masked Images			 Halftones			 Linearized PDF
Marked Content			 AcroForms			 Rendering Intents
Transfer Functions		 Functions dictionaries	 Smooth shading
Shape dictionaries 		 Xref streams		 Object streams
Name Dictionaries		 More on data structures	 Print-important annotations

The prerequisite for this class is the PDF File Content and Structure 1 class.

If you are curious about the flavor of PDF File Content & Structure 2 class, I have posted a
sample chapter from the student notes on the Acumen Training Resources page. Look
among the pdf resources for “PDF FC&S Sample.pdf.” The chapter included is that on pdf
file specification.

												 Return to First Page

What’s New?

Acumen Journal: What’s New?

http://www.acumentraining.com/resources.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you stare
off into space and remember the ‘60s?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

	 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

All of the Above

Acumen Journal

Check Box Properties

	btnHome:
	btnPrevPage:
	btnNextPg:
	btnNextPage:
	chkMeat: No
	chkFruit: No
	chkGrain: No
	chkLichen: No
	chkAll: No
	chkNone: Off

