
Table of Contents

The Acrobat User Password Protecting Acrobat Files
This month, we shall see how to add a password to limit the access readers have to your
Acrobat files.

PostScript Tech Using Images in a PostScript Form, Part 2 of 3
We continue last month’s topic: how to incorporate images into a PostScript form. This
month, we look at the ReuseableStreamDecode filter.

Class Schedule Jan–Feb–Mar
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? Looking into re-opening classes in the U.K.
Need some reader input, though.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 22 © 2003 John Deubert, Acumen Training

John Deubert’s Acumen Journal, January 2003

Acumen
Training

Password Protecting Acrobat Files
I’m surprised we haven’t talked about
this question before in this periodical:
How do you password-protect an Acrobat
document, preventing readers from
modifying it? This is a common need for
anyone who distributes copyrighted
documents in Acrobat format. As an obvious example, the Acumen Journal is password
protected so that you, the reader, can’t change the document’s contents. (Sorry.)

As it turns out, Acrobat allows you to easily attach to a PDF file a password that a
reader must supply in order to open that file and an additional password that is needed
to make other kinds of changes to the file: print it, modifying it, fill out form fields, etc.

This month, we’ll step through the process of attaching these passwords to a file.

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Permissions and
Passwords You can associate up to two passwords with a PDF file:

• A User Password required to open the PDF file. You may use this password to keep
Unauthorized Personnel from looking at your document.

• A Master Password that the reader must know in order to change restrictions you
have placed on the document. There are four of these restrictions, all pretty self-
descriptive:

- No printing: the user can’t print the document.

- No changing the document: the user can’t change the contents of the document.
The user can fill out form fields and attach annotations to the file.

- No content copying or extraction, Disable accessibility: This grays-out all of the
tools that would let a reader copy text or graphics from the PDF file into another
document. It also turns off the “accessibility” features that provide keyboard
access to all dialog items, etc.

- No adding or changing comments and form fields: Readers won’t be able to fill
out form fields or annotate the document.

These two passwords are independent: you may specify one, both, or neither.

Next Page ->

Acumen Journal: Acrobat User 3

Acrobat Password Protection

Specifying
Passwords To password-protect an Acrobat document, start with the document open in Adobe

Acrobat (you must use the full Acrobat for this, not the Reader), then do the following:

1. Select File>Document Security…

Acrobat will present you with the Document Security dialog box (below, right).

Next Page ->

Acumen Journal: Acrobat User 4

Acrobat Password Protection

2. Select Acrobat Standard Security.

The set of choices presented to you in the
Document Security’s pop-up menu may be
augmented by security plug-ins you may
have installed. The default security methods
supplied by Acrobat are Acrobat Standard
Security and Acrobat Self-Sign Security.

Self-sign security allows only people with
certain electronic signatures to open the file. This allows you to limit access to only
people you have specifically okayed. (For information about Acrobat Self-Sign
Security, see the October and November 2001 issues of the Acumen Journal or, for
a fuller treatment, my book Creating Acrobat Forms by Adobe Press.)

In this article, we discuss Acrobat Standard Security.

3. Click on the Change Settings… button.

Acrobat presents you with the
Standard Security dialog box (at
right).

Next Page ->

Acumen Journal: Acrobat User 5

Acrobat Password Protection

4. Select the restrictions you want to
place on the document, if any.

The lower half of the Standard
Security dialog box lets you select
which permissions you want to
withhold from the readers of your
document. Select as many of the
four checkboxes you wish.

5. Specify one or both of your passwords.

You may specify a password needed
to open the document and/or one
needed to override the other restrictions. (You will also need this second password
if you want to completely remove passwords from your document.

6. Select what level of encryption you want applied to the contents of your PDF file.

You may choose between 40- and 128-bit encryption. The
128-bit encryption is more secure, but is not readable
by Acrobat 4. If you expect some of the people who
read your file to have older versions of Acrobat, you should select 40-bit encryption.

7. Click the OK button.

That’s it; your file is now password-protected.

Next Page ->

Acumen Journal: Acrobat User 6

Acrobat Password Protection

Acrobat 4 If you are still using Acrobat 4 (I still do, sometimes, to avoid oddities in Acrobat 5),
the set of permissions and the two passwords are identical to those in Acrobat 5,
though the way you get to them is different. In Acrobat 4, you add password protection
to your document from the Save as… dialog box.

When you select File>Save as…, the Save-File-As dialog box
has a pop-up menu that allows you to specify security that
should be applied to the saved file. If you select Standard,
Acrobat presents you with a dialog box that allows you the
same choices as are offered by Acrobat 5.

Next Page ->

Acumen Journal: Acrobat User 7

Acrobat Password Protection

Security Plug-ins With Acrobat 5, Adobe made the security mechanism modular and extensible, allowing
third parties to create Acrobat plug-ins that add new types of excryption to Acrobat.
There are several companies that have written plug-ins that advantage of this, including
SecurSign by Appligent and Sign-it by CIC.

If you are curious about additional security plug-ins for Acrobat, I suggest you wander
over to PlanetPDF.com and look at their list of Acrobat plug-ins.

Return to Main Menu

Acumen Journal: Acrobat User 8

Acrobat Password Protection

http://www.appligent.com
http://www.cic.com
http://planetPDF.com

Using Images in Forms, Part 2
Last month, we started a discussion of how to create
PostScript forms that contain scanned images. We
saved the image data in a file on the RIP’s hard disk
and then created a PostScript form whose PaintProc
procedure made a call to the image operator that
read the data from that image data file.

This worked very well; we used it to turn an image
into a form and then executed the form twice,
producing the results at right. Unfortunately, last
month’s technique requires the RIP have a hard disk
directly available to it, something that is not true of
many RIPs.

This month, we shall examine a second way of
using an image from within a form: using the
ReusableStreamDecode filter to read the image data
into memory as a virtual file.

Next month, we’ll look at a third method: creating an
array of strings that together contain the image data.

If you haven’t read last month’s article, you should do so now; I’m going to assume it
is still fresh in your memory.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

ReusableStream-
Decode ReusableStreamDecode is a PostScript filter; its use in our example here will allow us

to read the entire image data into VM and then read it repeatedly as though it were a
repositionable file. In effect, we create a virtual file in RAM containing our image data;
our call to the image operator will then read data from that file, pretty much exactly as
we did last month.

PostScript Filters Like all PostScript filters, ReusableStreamDecode is a dingus you attach to a PostScript
data source, usually a file object. The result is what I call a “filtered-fileobject.” This
looks to PostScript exactly like a normal read-access file object: you can read data
from it as you would from any file; however, data read from or written to this file
object is passing through the filter and changed in a manner specific to that filter.
Depending upon the filter, the data will be compressed, uncompressed, converted from
binary to some flavor of ASCII or vice versa, or not changed at all.

The filter operator You attach a filter to a PostScript file with the filter operator:

fileobj params-if-any /FilterName filter => filtered-fileobj

The arguments are: the fileobject to which the filter should be attached; parameters, if
any, specific to the filter; the name of the filter you want. I shall refer you to your
PostScript notes or the PostScript Language Reference Manual for a complete list of the
filters available; the name we shall be using here is /ReusableStreamDecode.

Next Page ->

Acumen Journal: PostScript Tech 10

Images in Forms, Part 2

You should remember this
stuff, at least vaguely. We
briefly discuss filters in the
PostScript Foundations
and Support Engineers
classes. We go into them
in depth in the Advanced
PostScript class.

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html

ReusableStreamDecode The ReusableStreamDecode filter is an interesting beast. When you attach it to a file
object (upon execution of the filter operator), PostScript immediately reads the entire
contents of that file into VM, returning a filtered-fileobject that represents that data in
memory. That filtered-fileobject behaves in every way as though it were an actual,
read-access, repositionable file; in particular, you can read data from it and rewind it to
the beginning so you can read it again.

Thus,

currentfile /ReusableStreamDecode filter

will read the entire rest of our PostScript stream into memory and return a fileobject
representing that data.

Reading all of the remaining PostScript stream into VM is not particularly useful; it
leaves us with no remaining PostScript code to operate on our virtual file. Usually, you
attach ReusableStreamDecode with parameters that one way or another specify when
to stop reading the input stream into memory and, therefore, to resume executing it
as PostScript.

A complete discussion of how to use ReusableStreamDecode is way beyond what we
have time and space for here; take the Advanced PostScript class for the full story.
Here, we shall talk only about how to use this filter in our image-in-a-form project.

Next Page ->

Acumen Journal: PostScript Tech 11

Images in Forms, Part 2

http://www.acumentraining.com/Descr_APS.html

The PostScript Code Here’s the ReusableStreamDecode version of our form. This assumes our image data is
ASCIIHex encoded; we’ll talk about how to handle some of the other possibilities later.

Read data into VM /ImageData % The name of our eventual “virtual file”

currentfile % We’ll attach the filter to currentfile

<< /Filter /ASCIIHexDecode >> % Run data through this filter (see text)

% Now attach the filter and start reading data:

/ReusableStreamDecode filter

2c192d200f1f2213182319181d14171914181b161d121117121212141611

16191211140d0e0e0e13121716131c0d0b161517240d111c12151c13171a

... Whole heap o’ ASCIIHex-encoded image data ...

7fcbd986d4e188d4e286d4e18ad6e48ddbe88ad6e48fddea98e4f29debf8

a1edfba2f0fda6f2ffa9f5ffaef6ffaef7ffaef7ffaef7ffaef7ffaef7ff

> % End-of-data marker for ASCIIHexDecode data

def % Stack: /ImageData fileobj => ---

Next Page ->

Acumen Journal: PostScript Tech 12

Images in Forms, Part 2

This month’s sample pro-
grams are on the Acumen
Training Resources page
as ImageForm2.zip. This
file is in the zip file as
ReusableStream.ps.

http://www.acumentraining.com/resources.html

Create the form /JumpForm <<

/FormType 1 % FormType is always 1

/BBox [0 0 278 219] % The form prints image at 0,0

/Matrix [1 0 0 1 0 0] % Translate by 0,0; scale by 1,1

/PaintProc % Here we draw our form

{ pop % Discard the form dict. argument

ImageData 0 setfileposition % "Rewind" our image data

/DeviceRGB setcolorspace % We have an RGB image

278 219 scale % Width and height of the data

<< /ImageType 1

/Width 278 % Image is 278 samples across...

/Height 219 % ...and 219 scanlines hight

/BitsPerComponent 8 % 8 bits each of R, G, and B

/ImageMatrix [278 0 0 -219 0 219] % [w 0 0 -h 0 h]

/DataSource ImageData % The rewound data-in-VM

/Decode [0 1 0 1 0 1] % Map data 00…ff into color 0…1

>> image % Call the image operator

} bind

>> def

Use the form JumpForm execform % Here the PaintProc gets executed

0 219 translate

JumpForm execform % Here the form is rendered from the cache

Next Page ->

Acumen Journal: PostScript Tech 13

Images in Forms, Part 2

Step by Step /ImageData

We start by placing on the stack the name ImageData, which is the name we shall
eventually associate with our virtual file in VM.

We follow this with a call to the filter operator that finds three arguments on the stack:

currentfile

This is the object to which we shall attach the ReusableStreamDecode filter. We are
going to read image data from our input stream and place it in VM.

<< /Filter /ASCIIHexDecode >>

This is a dictionarythat contains parameters for our ReusableStreamDecode filter. In
this case, we are supplying the name of another filter, ASCIIHexDecode. The data read
from currentfile will be passed through this filter before being stored in VM. Thus, the
data we read will be converted from ASCIIHex to binary on its way to VM; this will
halve our data’s footprint in memory. As a by-product, this will also allow us to specify
where the image data ends and regular PostScript code resumes; we’ll see this in a
moment.

/ReusableStreamDecode filter

Finally, we place the name /ReusableStreamDecode on the stack and execute filter.
The filter operator immediately starts reading data from currentfile, passing the data
through the ASCIIHexDecode filter and placing the resulting binary data into VM.

Next Page ->

Acumen Journal: PostScript Tech 14

Images in Forms, Part 2

2c192d200f1f2213182319181d14171914181b161d121117121212141611
...
a1edfba2f0fda6f2ffa9f5ffaef6ffaef7ffaef7ffaef7ffaef7ffaef7ff
>

Our ASCIIHex data is terminated by “>”, the end-of-data marker for the ASCIIHexDecode
filter; since we are running our image data through the ASCIIHexDecode filter on its way
to VM, ReusableStreamDecode will see this character as end-of-file and cease streaming
our data into VM. The filter operator will return its filtered-fileobject on the operand
stack and the interperter will resume executing the input stream as PostScript code.

def

This def call looks a bit strange standing out all by itself, but remember that this is the
first item executed after the filter operator returns. When executed, def will find on the
operand stack the name ImageData, which we put there at the start of our program,
and the filtered-fileobject returned by the filter operator. The def operator will tuck
those two objects into userdict as a key-value pair.

ImageData is now associated with a fileobject that is associated with our image data in
VM. We can rewind this virtual file and read its data as often as we like.

Next Page ->

Acumen Journal: PostScript Tech 15

Images in Forms, Part 2

/JumpForm <<
...
>> def

Now that we have stored our data in memory, we can create our form dictionary. Most
of this code is identical to our example from last month, so I won’t repeat the detailed
description here. What is different (but not very different) is the definition of the form’s
PaintProc procedure. There are two lines in this procedure that are different from last
month’s example:

/PaintProc {
...
ImageData 0 setfileposition

This line “rewinds” our virtual file, imageData, to the beginning. The setfileposition
operator takes a file object (our filtered-fileobject, in this case) and an offset from the
beginning of the file (0, here, indicating the start of the file); it moves the “file pointer”
to the specified position in the file. In our case, we reset the file so that the image
operator, later in PaintProc, will read data starting at the beginning of the file.

<< ...
/DataSource ImageData
...

>> image

In our PaintProc’s call to image, we specify ImageData as the source of our image
data. Since ImageData looks to PostScript like a normal file object, image can use it as
a data source.

Next Page ->

Acumen Journal: PostScript Tech 16

Images in Forms, Part 2

...
>> def

JumpForm execform
0 219 translate
JumpForm execform

Having defined our form dictionary, we can now
execute the form repeatedly. In our case, we execute
it twice, producing the output at right. In the first
execution, execform executes the form’s PaintProc,
drawing the image and caching the painted form.
The second call to execform draws from the form
cache and does not need to execute PaintProc.

This accomplishes what we set out to do: we have
created a PostScript form that prints an image without
the use of a hard disk.

Next Page ->

Acumen Journal: PostScript Tech 17

Images in Forms, Part 2

Other Data Encodings Our sample code assumes the image data has been encoded as ASCIIHex. This is very
common, but not at all the only possibility. Let’s see what we would have to change in
our code to accommodate two other common encodings: ASCII85 and raw binary.

ASCII85 The ASCII85 case is easy. Only one thing needs to change in our PostScript code: we will
read data into memory through the ASCII85Decode filter, rather than ASCIIHexDecode.
Thus, our call to filter looks like this:

currentfile

<< /Filter /ASCII85Decode >> % Our data is ASCII85 encoded
/ReusableStreamDecode filter

//^#^%j)u/(aBn8*>B;-'Gqc)*>/r#&eYfk((h<"&ePfe%Lrs^&f2;s*"<8k'c/,)

...

Y=>(e8Y34]T<Vh/^M^^+J'6N"eDZ55ieGtAMUpjJgZXOGjH&-^R,mh/lhI1@qkETY

VXjbdp&D2gs/u+rY4qt!p]%Djs/u+r~>

def

Our data now ends with “~>”, which is the end-of-data indicator for ASCII85.

The change to ASCII85-encoded data has no affect on the definition or use of our form.
That PostScript code is completely unchanged from our original ReusableStreamDecode
example.

Next Page ->

Acumen Journal: PostScript Tech 18

Images in Forms, Part 2

This file is in the
ImageForm2.zip archive as
ReusableStreamA85.ps.

Raw Binary Embedding the image data in our PostScript stream as raw binary, rather than in some
ASCII-encoded format, is advantageous, since the ASCII encodings substantially increase
the size of the data and, therefore, transmission time. ReusableStreamDecode has no
trouble reading binary data into VM, of course; the trick is telling it when to stop, so
that the interpreter can resume treating the input stream as PostScript code. Earlier, we
used the end-of-data markers provided by the ASCIIHexDecode and ASCII85Decode
filters to halt ReusableStreamDecode’s processing of the input stream. There is no
equivalent end-of-data intrinsic to the raw data, so how to we tell ReusableStreamDecode
when to quit?

We can define our own end-of-data marker if we read the image data through the
SubFileDecode filter:

/ImageData

currentfile

<< /Filter /SubFileDecode % Pass data thru SubFileDecode
/DecodeParms << /EODString (*EOD*) >> % “*EOD*” will be end-of-data

>>
/ReusableStreamDecode filter

,- "�#������������

... Binary image data goes here ...

t{nmsi�i]=óó.àëqÉ%Åö&É§(àÆ?§Œ)î¿)ò

EOD % This is our end-of-data marker; PS code resumes

def % Stack: /ImageData fileobj => ---

Next Page ->

Acumen Journal: PostScript Tech 19

Images in Forms, Part 2

This file is in the
ImageForm2.zip archive as
ReusableStreamRaw.ps.

SubFileDecode is a dummy filter; it has no effect on the data passing through it. What
the filter does allow you to do is define your own end-of-data indicator. The DecodeParms
dictionary in the code above (yes, it’s “Parms,” not “Params”; go figure) has a single
key-value pair in it, defining EODString to be associated with the string *EOD*. This
string of five characters will be seen by the SubFileDecode filter as end-of-data. At this
point, ReusableStreamDecode will cease reading data, the filter operator will return the
filtered-fileobject, and the PostScript interpreter will kick back in.

Once again, sending the image data as binary has absolutely no effect on the remainder
of our program. The PostScript code that defines and later executes the form is completely
unchanged.

Presuming your communication with the PostScript interpreter transparently passes
binary data, this is probably the best way to pass along the image data.

Memory Impact At first glance, it would seem as though a major advantage to sending our data as raw
binary is that it reduces the amount of memory needed to store the data, compared to
the ASCII encodings. This actually isn’t the case; we passed incoming ASCII data
through a decode filter before storing it in memory, so in all three of our cases, we
stored the actual binary image data in VM.

Sending the data as raw binary affects only the size of our PostScript stream and,
therefore, transmission time.

Next Page ->

Acumen Journal: PostScript Tech 20

Images in Forms, Part 2

ReusableStreamDecode
Limitation Using ReusableStreamDecode to supply image data to a form works excellently and is my

very favorite way of placing an image into a form. It is, however, subject to one serious
restriction: it will work only on LanguageLevel 3 devices. The ReusableStreamDecode
filter did not exist in Level 2.

If your PostScript code must work on a variety of Level 2 and 3 devices, this is not a
good method to use.

Damn.

A Better
Alternative So what do you do if you want to include an image in a PostScript form for a wide variety

of printers? They could be Level 2 or Level 3; they may or may not have hard disks.

What you do is pass the image data as an array of strings. Practically speaking, this is
the best way of carrying out this task in a world of mixed printers.

Unfortunately, wouldn’t you just know it, we’re out of space this month.

Next month, then.

Return to Main Menu

Acumen Journal: PostScript Tech 21

Images in Forms, Part 2

Acumen Journal 22

Page Title

Schedule of Classes, Jan – Mar 2003
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations January 27 – 31 March 24 – 28

Advanced PostScript March 3 – 7

PostScript for Support
Engineers February 10 – 14

Jaws Development On-site only; see the Acumen Training website for more information.

PostScript Course Fees PostScript classes cost $2,000 per student.

On-Site Classes These classes may also be taught on your organization’s site. Registration Info �

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes �

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website
regarding setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Troubleshooting with
Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1⁄2-day each) cost $180.00 or $340.00
for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there
is a 10% discount if three or more people from the same organization sign up for the
same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

U.K. Classes? I’m trying to assess how much interest there would be in my conducting occasional (perhaps
quarterly) PostScript classes in London as a convenience to European customers. If you would
be interested in attending classes in London, please drop me an email. (No commitment,
of course; I’m just trying to find out if there is any interest in my doing this or if I
should be spending my attention elsewhere.)

Creating Acrobat Forms
John Deubert, Adobe Press

“With this book, I wouldn’t have
been so frustrated. Who knows?
Maybe I wouldn’t have become
the Scourge of Europe!”

— G. Kahn

Return to First Page

Acumen Journal: What’s New

What’s New?

mailto:john@acumentraining.com?Subject=London PostScript classes

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it force a public
review of your own stomach contents?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Standard Security Dialog Box

	btnHome:
	btnPrev:
	btnNext:
	btnAppligent:
	btnCIC:
	btnPlanetPDF:

