
Table of Contents

The Acrobat User Acrobat 5 Hairlines, Revisited
Last September, we discussed a fix for the too-thick hairlines displayed by Acrobat 5. Since
then, several people have pointed out cases where our fix doesn’t work (Microsoft Word, for
example). This month, we extend our fix to include some of the exceptions.

PostScript Tech Saving PostScript Code to Disk
Rather than repeated transmitting EPS files or other often-used PostScript snippets, you can
save your PostScript code to the RIP’s disk and execute it from there. This month we’ll see how.

Class Schedule January-February-March-April
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? See you at Seybold?
Going to be at Febuary’s Seybold Seminars in New York? Look me up!

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, © 2002 John Deubert, Acumen Training

John Deubert’s Acumen Journal, January 2002

Acumen
Training

Acrobat 5 Hairlines, Revisited
Acrobat 5 displays hairlines much thicker than
they should be, due to a peculiarity in how it
rounds off line widths. Last September, we
looked at a technique for fixing this problem
with a combination of automatic stroke adjustment and the PostScript BeginPage
mechanism.

This technique doesn’t work with the PostScript — and therefore the PDF files — produced
by some applications, notably Microsoft Word.

This month, we’ll add to our earlier code to extend our fix to some of the missing
applications.

Next page ->

The Acrobat User

Acumen Journal: The Acrobat User

Where We Left Off When last we left our heroes, we had fixed Acrobat 5’s hairlines by turning on automatic
stroke adjustment. We did this with a call to setstrokeadjust installed as a BeginPage
procedure that would execute at the beginning of each page.

We did this by placing the following PostScript code into a
file named prologue.ps in Distiller’s Data folder.

<< /BeginPage

{ pop true setstrokeadjust} bind

>> setpagedevice

Important Note: You probably should reread the September 2001 issue of the Acumen Journal before
reading the rest of this month’s article.

The Problem Continues… In most cases, this technique works very well. Unfortunately, some applications are
resistant.

• Some applications explicitly turn stroke adjustment off again, undoing our fix.

• Some applications draw their underline strokes as very thin, filled rectangles, which are
unaffected by automatic stroke adjustment. (Microsoft Word and FrameMaker do this.)

This month, we’ll add a little more PostScript code to our fix to bypass some of these
resistant strains.

Next page ->

Acumen Journal: Acrobat User

Acrobat 5 Hairlines, Revisited - Page 2

http://www.acumentraining.com/AcumenJournal.html

Disabling
setstrokeadjust One of PostScript’s very useful characteristics is the ability to redefine the PostScript

operators, the intrinsic PostScript commands. When the PostScript output says to do
one thing, a PostScript programmer can make it do something else, entirely.

This is somewhat dangerous programming, but very powerful. Many PostScript imposition
and other post-processing software make extensive use of this feature of the language.

We can use this to keep a program’s PostScript output from changing automatic stroke
adjustment back to false, undoing our prologue.ps activities. We are going to add the
following line to our prologue.ps after the earlier call to setstrokeadjust.

/setstrokeadjust /pop load def

This redefines the setstrokeadjust operator to do nothing at all. This redefinition will affect
all calls to setstrokeadjust that occur after our prologue.ps. In particular, when an applica-
tion’s PostScript output tries to change stroke adjustment to false, nothing will happen.

Our prologue.ps file now looks like this:

<< /BeginPage

{ pop true setstrokeadjust} bind

>> setpagedevice

/setstrokeadjust /pop load def

Next page ->

Acumen Journal: Acrobat User

Acrobat 5 Hairlines, Revisited - Page 3

Fixing Rules-as-
Rectangles Fixing the PostScript output from applications that use filled rectangles, rather than

stroked lines, for their underlines must be done on an application-by-application basis.
I’m going to present a fix here that should work for many applications, including
Microsoft Word.

Redefining rectfill The PostScript rectfill operator draws a filled rectangle on the page. This operator is used
by many applications to draw filled rectangles quickly. Microsoft Word, in particular, uses
this operator to draw the underline strokes (as filled rectangles) for underlined text.

To fix this, we can redefine rectfill so that it draws a stroked line that
exactly matches the filled rectangle. That is, our rectfill will draw a
stroked horizontal line that extends through the middle of the proposed
rectangle and that has a line width equal to the rectangle’s height.
This stroked line will look exactly like the original filled rectangle. (See
the illustration at right.)

This stroked line will be subject to automatic stroke adjustment and,
therefore, improve their on-screen appearance.

Next page ->

Acumen Journal: Acrobat User

Acrobat 5 Hairlines, Revisited - Page 4

Filled Rectangle

Stroked Line

Our New prologue.ps So, our Prologue.ps now looks like this:

<< /BeginPage

{ pop true setstrokeadjust} bind

>> setpagedevice

/setstrokeadjust /pop load def

/rectfill

{

dup 8 gt

{ rectfill }

{ gsave

4 2 roll moveto

dup setlinewidth

2 div 0 exch rmoveto

0 rlineto stroke

grestore

}

ifelse

} bind def

The new rectfill definition checks the height of the rectangle and substitutes a stroked
line if the height is less than a threshold value (8, in our example above). Otherwise, it
does a regular rectfill. (Note to PostScript programmers: we’re depending on bind to
keep this from being recursive.)

Next page ->

Acumen Journal: Acrobat User

Acrobat 5 Hairlines, Revisited - Page 5

Caveats to the rectfill
redefinition There are some important points to keep in mind when using this version of prologue.ps.

Application-specific The PostScript code that converts a rectangle to a stroked line is very dependent upon the
details of the PostScript output. Our prologue.ps will fix underline strokes for documents
created in Microsoft Word, but not necessarily any other application’s document. You’ll
need to try it and see. (For that matter, I’m doing all my work with the Macintosh version
of Microsoft Word; it may fail on documents created with the Windows version.)

Mildly dangerous Conceivably, this redefinition of could cause some exotic PostScript output to fail.
A redefinition of rectfill should be reasonably safe, but if some application’s output
suddenly fails to Distill, you may want to return to the simpler prologue.ps.

Next page ->

Acumen Journal: Acrobat User

Acrobat 5 Hairlines, Revisited - Page 6

A Call for PostScript
Samples Again, the prologue.ps that fixes an application’s underline strokes is very specific to

that particular application; it may also work on others, but there’s no guarantee.

If you have a document that this prologue.ps doesn’t fix, please send me the
PostScript output that exhibits the problem. I’ll try to put together a prologue.ps that
fixes that application’s output. (For example, could someone please send me some
PostScript output from FrameMaker?)

Please send me PostScript from the simplest document you can create that demonstrates
the problem. (Maybe a document with a single, underlined word.)

Prologues.zip All of the versions of prologue.ps are on the Acumen Training resources page in a file
named Prologues.zip. (www.acumentraining.com/resources.html) I’ll add new prologue.ps
files for particular PostScript output as they become available.

To start, there are only two prologue.ps files in this zip file:

prologue.ps This is last September’s prologue.ps plus the setstrokeadjust redefinition.
Use this unless you are having trouble with a particular piece of output.

prologueWord.ps This contains the rectfill redefinition required by Microsoft Word and
other applications.

To use one of these files, rename it to prologue.ps, if necessary, and place it in the
data folder in your system’s Distiller folder.

Return to Main Menu

Acumen Journal: Acrobat User

Acrobat 5 Hairlines, Revisited - Page 7

http://www.acumentraining.com/resources.html

Saving PostScript Code to Disk
Here’s a frequent question: how to you store often-used PostScript code on a printer
so that you can repeatedly execute it within a PostScript stream?

Let’s say you have a logo created in Adobe
Illustrator (or whatever) and saved as an
Encapsulated PostScript file.

If you use this EPS file as an illustration in a
PostScript document, you will need to embed
the EPS’ PostScript code in the print stream
once for each instance of the EPS illustration
in the document. If you place this logo on
each page of a 50-page document, then the EPS code will need to be embedded in the
PostScript print stream 50 times.

(The “Sparrow Boy” EPS file above contains just under 100k of PostScript; the 50
embedded instances would amount to 5 megabytes of PostScript.)

What we would like to do is send the EPS file’s PostScript to the RIP only once and then
just refer to that stored PostScript whenever we want to print the EPS file.

This is perfectly do-able if you have either a hard disk available to your RIP or a PostScript
Level 3 printer.

This month we’ll look at the solution that uses a hard disk.

Next page ->

Acumen Journal: PostScript Tech

PostScript Tech

Brave Little Sparrow Boy
productions, inc

Overview of the
Process In short, what we shall do is this:

1. Store our repeatable PostScript on a hard disk available to our PostScript RIP.

2. Whenever we want to execute this PostScript, we shall do so with the PostScript run
operator.

(%disk1%EPSFiles/SparrowBoy.eps) run

We shall discuss this technique in terms of a repeatedly-printed EPS file, but it works as
well with any PostScript code or data. If you have a commonly-used set of PostScript
definitions, you can save it in a file and execute the definitions with a single run.

A True Story This is a very effective method for reducing the size of a PostScript stream. As an
example:

The overheads file for my Acrobat Essentials class used to have the
Acquired Knowledge logo (as at right) on each page as an EPS file.
Printing the 400-page document to a PostScript file (in preparation for
Distilling to PDF) yielded a 12 MB PostScript file.

It turned out that 10 MB of the 12 MB file was the 400 repeated instances of the AKI
logo EPS code. Storing the code on disk and using run reduced the PostScript file to a
bit under two megabytes.

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 2

™

Saving PostScript
to Disk Saving a stream of PostScript to disk is relatively simple. It’s actually just a variation on

one of the examples we present in the PostScript Foundations and PostScript for Support
Engineers classes. (For those who’ve taken one of those classes, it’s the readline example
in which we printed the Mark Twain blue jay quote to the current page.)

It’s important to note that this technique requires a hard disk that is directly available
to the PostScript RIP.

• If you are using Acrobat Distiller, PDF Creator, or GhostScript, files can be stored on
your computer system’s hard disk.

• If you are using a printing device with a RIP running on a standalone computer, the
destination file will be on the RIP’s system.

• If you have a self-contained desktop printer, then the hard disk must be either built
into the printer itself or connected to the printer’s SCSI, USB, or other port.

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 3

The Algorithm What we need to do is this:

1. Open the destination file into which we shall save our PostScript code.

2. Start up a loop, which does the following:

• Read a buffer of PostScript code from the input stream.

• Write that buffer to the destination file.

The loop repeats until the end of our PostScript, at which time we’ll close the
destination file and quit.

The PostScript to be stored will follow the invocation of the loop in the PostScript file.

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 4

The Code This PostScript code defines a WriteToFile procedure, which implements our algorithm.
This is available in WriteToFile.ps on the Acumen Training resources page:
www.acumentraining.com/resources.html.

/InBuf 8192 string def % Our input buffer

/WriteToFile % (filename) => ---

{

/destination exch (w) file def % Open destination file

{

currentfile InBuf readstring % Read PS from currentfile

exch destination exch writestring % Write PS to destination

not { exit } if % Exit if EOF

} loop % Else, do it again

destination closefile % Close our destination file

} bind def

(psfiles/Sparrow.eps) WriteToFile % Invoke procedure

%!PS-Adobe-3.0 EPSF-3.0 % This is written to file

%%Title: (Sparrow Logo.eps)

...

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 5

http://www.acumentraining.com/resources.html

The Code, Step-by-Step /InBuf 8192 string def

We’ll be reading our PostScript code into this buffer. I’m allocating an 8k buffer here.
Make this as large as you have memory for, up to a maximum of 64k.

/WriteToFile % (filename) => ---

This is the procedure that does the actual work. It takes a string argument containing
the name of the file into which the PostScript should be stored. Note that this may be
a complete pathname or simply a filename, in which case the file will be created on the
RIP’s default volume.

/destination exch (w) file def

Here we open the destination file with write permission and give it the key-value name
“destination.”

{
currentfile InBuf readstring % Read PS from currentfile

We begin our loop by reading a buffer of PostScript code (or other data) from currentfile.
The readstring operator, as always, returns a boolean on top of the stack (indicating
end-of-file if false) and, beneath that, InBuf again, now holding data read from currentfile.
(Check your student notes if you’ve forgotten how readstring works.)

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 6

exch destination exch writestring

We bring the string full of data to the top of the stack and then write it to destination.
This leaves the readstring boolean on top of the stack. We want to exit from the loop if
this boolean is false.

not { exit } if
} loop

We reverse the readstring boolean and exit from the loop if the reversed boolean is
true (that is, if the original boolean was false).

Otherwise, we loop back and get another buffer of data.

destination closefile % Close our destination file
} bind def

We finish our procedure definition by closing the destination file.

Nothing actually happens, of course, until we invoke our WriteToFile procedure:

(psfiles/Sparrow.eps) WriteToFile
%!PS-Adobe-3.0 EPSF-3.0
%%Title: (Sparrow Logo.eps)

Everything from the execution of WriteToFile to the end of the PostScript stream will be
written to the destination file.

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 7

Executing the
PostScript Having stored the PostScript code on disk, we can execute it in any future PostScript

stream sent to that particular RIP with a single call to the run operator:

(psfiles/Sparrow.eps) run

The run operator takes the name of a file on the RIP’s disk and executes its contents.
Instead of transmitting the original 100k EPS file, we transmit the 25-byte run execution.

Using Code in a Form There are other things we can do with the stored PostScript code. For example, we
could execute the file as part of a PostScript Level 2 form:

<<

/FormType 1

/BBox [0 0 325 155]

/Matrix [1 0 0 1 0 0]

/PaintProc {

pop

(psfiles/Sparrow.eps) run

}

>> execform

This way, the EPS code would be transmitted and executed only once.

The above is a bit simplified. In particular, the PaintProc should do a save/restore and
other bookkeeping chores.

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 8

A Few Final Notes
The data is only

available on this RIP Keep in mind that your call to run will work only on printers on which you have stored
your PostScript code. This ties your PostScript streams to a particular set of printers.
This is perfectly acceptable if you work in a print environment with a known set of
printers. It makes this technique inappropriate for PostScript that will be sent to wholly
unknown printers.

Other Data on Disk In our example, we saved to disk PostScript code taken from an EPS file for later
repeated execution. This technique may also be used to store and use other kinds of data.

For example, you could save image data to the disk (just follow the invocation of
WriteToFile with image data, instead of executable PostScript) and then print the
image, taking the data from disk:

200 300 8 [200 0 0 -300 0 300]

(datafiles/monkeytoes.data) (r) file

image

PostScript will automatically close the data file when you hit the end of file, by the way.

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 9

Compressed
Data/PostScript With a relatively minor modification to WriteToFile, you can write your information to

disk through a compression filter, storing the data or PostScript code in LZW compressed
form, for example. There is a second sample file on the Resources web page,
WriteToDisk.ps which demonstrates this.

Executing Compressed
PostScript By the way, you need to do a little work to execute compressed PostScript code; you

can’t just execute run with the filename. Instead, you must explicitly open the file and
execute it through the appropriate decode filter.

For example, the following would execute a file containing LZW-compressed PostScript:

(PSFiles/Bunny_Yoga.ps) (r) file

/LZWDecode filter cvx exec

Next page ->

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 10

http://www.acumentraining.com/resources.html

What if my RIP doesn’t
have a hard disk? If your RIP doesn’t have direct access to a hard disk, then your only good option is to

use the PostScript Level 3 ReuseableStreamDecode filter, which will let you save your
PostScript code or other data as a “virtual” file in RAM.

That’s a very long story, occupying a good hour’s discussion in the Advanced PostScript
class. (By which I mean it’s not a topic that will ever appear in the Journal. Sorry.)

But my RIP isn’t Level 3,
either. Bummer.

In that case, there is no good method for storing arbitrary PostScript or data in the
printer for repeated use. If the PostScript is extremely simple and doesn’t attempt to
read the input stream, you may be able to turn your PostScript into a procedure:

/MyEPSFile

{

...

... Your PS Code Here

...

} bind def

This is way more likely to fail than not, usually with a stackoverflow error. (PostScript
Foundations students: do you remember why this fails with stackoverflow? Well, why not?)

Time to upgrade your printer, maybe?
Return to Main Menu

Acumen Journal: PostScript Tech

Saving PostScript to Disk - Page 11

Schedule of Classes, January – April, 2002
Following are the dates and locations of Acumen Training’s upcoming PostScript and
Acrobat classes. Clicking on a class name below will take you to the description of that
class on the Acumen training website.

The PostScript classes are taught in Orange County, California and on corporate sites
world-wide. See the Acumen Training web site for more information.

PostScript Classes
PostScript Foundations March 18 - 22

Advanced PostScript January 21 – 25 April 29 – May 3

PostScript for Support
Engineers January 14 – 18 April 15 – 19

Jaws Development April 2 – 5

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $2,000 per student.
These classes may also be taught on your organization’s site. Registration �

Acrobat Classes �

Acumen Journal: Class Schedule

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

On-Site Only These classes are taught only on corporate sites. If you have an interest in any of
these classes for your group, please see the Acumen Training website regarding
arranging an on-site class.

Acrobat Essentials This class teaches the student how to make perfect PDF files. It includes complete
coverage of the meaning and proper settings of all of the Distiller Job Options.

Interactive Acrobat Here we show you how to add bookmarks, links, buttons, sounds, movies, form fields,
and other interactive features to an Acrobat file.

Creating Acrobat Forms This class shows you how to make interactive forms in Adobe Acrobat. It steps you
through creating the form, posting form contents to a server, and everything else you
need to create a working PDF form.

Troubleshooting with
Enfocus’ PitStop This class shows the student how to use all of the capabilities of this popular editing

and preflight software.
Back to PostScript Classes

Return to First Page

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s
classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact us any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

See you at
Seybold I’ll be teaching two Acrobat classes at the New York Seybold Seminars,

February 19 & 20. These are:

PDF for Prepress
A slightly shortened version of Acrobat Essentials.

Creating Acrobat Forms
A slightly shortened version of my usual Creating Acrobat Forms class.

If you attend the Seybold Seminars in February, come by and say “Hi.”

Return to First Page

Acumen Journal: What’s New

What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it, or does it make you
want to make faces at small children?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or
PostScript? Feel free to email me about. I’ll answer your question if I can. If enough
people ask the same question, I can turn it into a Journal article.

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnHome:
	btnPrev:
	btnNext:

