
Table of Contents

The Acrobat User Batch Processing in Acrobat

Acrobat has a quite useful, often overlooked batch processing ability that lets you apply a

set of actions to the one or more PDF files. This month, we’ll see how to use it.

PostScript Tech Using Images in a PostScript Form, Part 3 of 3

We finish our three-part series on incorporating images into a PostScript form. Our

final installment describes a technique that will work on any Level 2 printer.

Class Schedule Feb–Mar–Apr

Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? London classes resuming

John is returning to London with the PostScript Foundations class in June.

Contacting Acumen Telephone number, email address, postal address, all the ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Volume 23 © 2003 John Deubert, Acumen Training

John Deubert’s Acumen Journal, February 2003

Acumen
Training

Acrobat Batch Processing

Many people are unaware that

Acrobat has quite a useful batch

processing mechanism that lets you

perform automated actions upon

one or more PDF files. Simply select

a sequence from the File>Batch

submenu and Acrobat will carry out

the actions that make up that

sequence.

Depending upon the sequence, the

actions may be applied to the

current document, a folder full of

PDF files, or a file selected when

you execute the sequence.

This month, we shall see how to

create and use our own batch

sequences.

Next Page ->

The Acrobat User

Acumen Journal: Acrobat User 2

Creating a
Sequence If you select File>Batch Processing>

Edit Batch Sequences…, Acrobat

will present you with a dialog box that

lets you rename, delete, and otherwise

manage the currently-defined

sequences. Of interest to us here is the

New Sequence… button.

When you click on this button, Acrobat asks you for

a name for then new sequence. You can type in any

short, descriptive name for your sequence.

Click the OK button and Acrobat presents you with the

Batch Edit Sequence dialog box (next page) that we

use to specify the characteristics of our new sequence.

Next Page ->

Acumen Journal: Acrobat User 3

Acrobat Batch Processing

Setting Up the Sequence The Batch Edit Sequence dialog

box lets you specify the three

properties that characterize a

batch sequence:

1. The commands that make up

the sequence.

Click the Select Commands…

button to specify what should

actually happen when this

sequence executes.

2. To what files the sequence

should apply.

You can select from among four choices in a pop-up

menu, as at right. If you select Selected Files or Selected

Folder, you will need to click the Choose button to specify

the files or folder to which the sequence should apply.

3. The output location, that is, the location into which a PDF

file should be saved after being modified by our sequence.

The Output Options button lets you specify the name of

the file to which the modified document should be saved. I’ll let you explore this on

your own.

Next Page ->

Acumen Journal: Acrobat User 4

Acrobat Batch Processing

Specifying the

Sequence Clicking the Select Commands button in the Batch Edit Sequence dialog box presents

you with the Edit Sequence dialog box. This lets you specify the actions that will make

up your sequence.

You choose these actions from a predefined list on the

left side of the dialog box. To add one of these actions

to your sequence, select that action in the list and click

on the Add button. You may add as many of these actions

to your sequence as you wish.

For the purpose of discussion, I’ll assume that we are

adding Set Open Options to our sequence, as in the

illustration above. This action sets the Document Open properties of a PDF file (the initial

window size, magnification, etc.)

Next Page ->

Acumen Journal: Acrobat User 5

Acrobat Batch Processing

For a complete discussion

of the Acrobat Document

Open options, see the

December 2001 Acumen

Journal.

http://www.acumentraining.com/AcumenJournal.html

Action Settings When you click on the disclosure

button (the little “twisty triangle”

on the Mac) for an action in your

sequence, Acrobat displays the

settings associated with that

action, as at right. For example,

in the case of a Set Open Options

action, Acrobat will show you the

Document Open options set by

the action.

Changing the Settings To change the settings associated with an action in your sequence, double-click that

action in the right-hand list. Acrobat will present you with a dialog box that lets you

specify the details of that action. This dialog box will be different for each type of action.

At right is the dialog box for the Set

Open Options action. This presents

all the Document Open properties

available in Acrobat. In this dialog

box, you specify how this action

should set these properties.

Note you can set a property to

Leave As Is, indicating it should not

be modified by the sequence.

Next Page ->

Acumen Journal: Acrobat User 6

Acrobat Batch Processing

“Interactive” Switch There is a little icon to the left of each item in your sequence’s list of

actions. Clicking this icon toggles “interactive mode” for that action.

If interactive mode is turned on,

the action will carry out the activity

you specified and then present you

with the regular Acrobat dialog box

that performs that same action. (In

the case of the Set Open Options

action, this would be the standard

Document Open Options dialog box,

at right.)

Interactive mode lets you make

changes to the settings each time

you run the sequence. (In our

Open Options, perhaps we always want to open to page one, but we want to set the

default magnification on a case-by-case basis.)

Done! Once you have specified all of the actions that belong in your sequence, and the settings for

each action, you can exit out of all the dialog boxes. Your sequence is now ready to use.

Next Page ->

Acumen Journal: Acrobat User 7

Acrobat Batch Processing

Using Your Sequence Once you have created a sequence,

it will appear in the Acrobat Batch

Processing submenu. To execute

your new sequence, simply select

it in the submenu.

By default, before executing a

sequence, Acrobat will ask if

you’re sure you want to do so;

you can turn off this confirma-

tion request in Acrobat’s

preferences.

I have found Acrobat’s batch

sequences to be quite useful

and remarkably easy to use.

They’re not nearly as fully

featured as, say, the Action

List mechanism in Enfocus’

PitStop, but are certainly

something I find myself using

frequently.

Return to Main Menu

Acumen Journal: Acrobat User 8

Acrobat Batch Processing

Using Images in Forms, Part 3

For the past two months, we have looked at ways to

incorporate scanned images into a PostScript form.

The difficulty associated with this task is supplying

image data to our form’s PaintProc procedure; there

is no way of predicting when this procedure will be

called by the form mechanism.

So far, we have examined two methods for providing

data to PaintProc, each with its virtues and problems:

• Save the image data to disk.

This works very well, but requires the PostScript

interpreter have a disk available to it; this is very

frequently not the case.

• Save the image data into memory using the

ReusableStreamDecode filter.

This, too, works very well, but will work only on

PostScript 3 devices, since ReusableStreamDecode

did not exist in Level 1 or 2.

This month, we shall conclude the series with a look at a third method that lacks the

disadvantages of the other two methods: storing the data in an array of strings.

Next Page ->

Acumen Journal: PostScript Tech

PostScript Tech

This article assumes you

have read the previous

two articles. If you

haven’t done so, do so.

You can get them from

the Acumen Journal web

page.

http://www.acumentraining.com/AcumenJournal.html

An Overview What we’re going to do is put our image data into an array of strings:

/imagedata [

(...first dollop of data...)

(...second dollop of data...)

...

(...nth dollop of data...)

] def

Our call to the image operator will then use a data acquisition procedure (DAP, for

short) for its data source. Remember data acquisition procedures? When used as a

source of image data, it is called by the image operator whenever it needs more data;

the procedure is expected to return a string containing image data.

In our case, every time image calls our DAP, the procedure will simply fetch the next

data string from our array and leave it on the stack as its return value:

{ imagedata i get

/i i 1 add store

}

Note that we shall need to keep an externally-defined variable as our index into the array.

The nice thing about this approach is that it will work on any LanguageLevel 2 or 3

printer; no hard disk is needed.

Next Page ->

Acumen Journal: PostScript Tech 10

Images in Forms, Part 3

We discuss data acquisi-

tion procedures in the

PostScript Foundations

and Support Engineers

classes. Go back and

check your notes for a

review.

Constructing the
Data Array Before we dive into the PostScript code, let’s address ourselves to a preliminary issue:

how do we create this array of image data strings? I don’t much want to do what is on

the previous page: have a series of parentheses, each containing many kilobytes of

image data:

/imagedata [

(...first dollop of data...)

...

(...nth dollop of data...)

] def

Among other things, an occasional byte of image data will happen to be the ASCII code

for a parenthesis or a backslash; since these have meaning to the PostScript scanner

when it’s constructing a string, they will poison the creation of that string. We could

preprocess the data, preceding “special” characters with a backslash, but I’d very

seriously rather not.

It would be nice if we could come up with a more convenient way of constructing the data

array, preferably something that would let us just dump image data into the input stream.

I wouldn’t bring this up if we couldn’t do it, of course.

As we shall see, our PostScript code will start by defining a procedure, CreateDataArray,

that reads data from a file (currentfile, in our case) and places it into an array of strings.

Next Page ->

Acumen Journal: PostScript Tech 11

Images in Forms, Part 3

The PostScript This sample program mirrors the previous months’ examples. It places an image (“The

Jumping Granddaughter”) into a form and then uses the form to print the image twice,

as on the first page of this article.

Create the String Array /CreateDataArray % srcfileobj => [(Array)(of)(Strings)...]

{

/temp exch def % Save the file object

[% Begin our array (puts a mark on the stack)

{ % Begin our "loop" loop

temp 16384 string readstring % Read data into a new string

not { exit } if % Exit if we are out of data

} loop % Otherwise, go back & do it again

] % Create the array

} bind def

% Create an array of strings, reading data from currentfile

/ImageData

currentfile /ASCIIHexDecode filter CreateDataArray

2c192d200f1f2213182319181d14171914181b161d121117121212141611

16191211140d0e0e0e13121716131c0d0b161517240d111c12151c13171a

...

0f0e131414161d181e1611181f17241a1221170c1d160b1b190e1e1c121d

>

def

Next Page ->

Acumen Journal: PostScript Tech 12

Images in Forms, Part 3

This sample program is

in the file ImageForm3.zip

on the Acumen Training

Resources page.

http://www.acumentraining.com/resources.html

Define the Form /JumpForm << % This is the same form as in the

/FormType 1 % previous two Journal articles.

/BBox [0 0 278 219] % The changes are commented below.

/Matrix [1 0 0 1 0 0]

/PaintProc

{ pop

userdict /i 0 put % Initialize our index

/DeviceRGB setcolorspace

278 219 scale

<< /ImageType 1

/Width 278

/Height 219

/BitsPerComponent 8

/ImageMatrix [278 0 0 -219 0 219]

/DataSource { % Here’s our Data Acq. Proc.

ImageData i get % Get next string in the array...

/i i 1 add store % ...and increment i in userdict

} bind

/Decode [0 1 0 1 0 1]

>> image

} bind

>> def

Use the Form JumpForm execform

0 219 translate

JumpForm execform

Next Page ->

Acumen Journal: PostScript Tech 13

Images in Forms, Part 3

Stepping Thru’ the Code

Defining the Procedure Our program starts by defining a procedure that creates an array of strings from data

read from a fileobj, currentfile, in our case.

/CreateDataArray % srcfileobj => [(Array)(of)(Strings)...]
{

The CreateDataArray procedure takes a fileobject as its argument. It reads to the end

of that file, storing the data it receives into an array of 16k strings, returning that

array on the stack.

You will invariably want to attach a filter to your source fileobject so that you can tell

the procedure where the end of the data is. Otherwise, the procedure will happily read

the entire rest of your PostScript program into the array, including whatever executable

PostScript code follows the call to CreateDataArray. We’ll come back to this topic in a

moment.

/temp exch def % Save the file object

Our procedure starts by saving the fileobject into a variable, temp. I admit to an aesthetic

bias against saving procedure arguments into variables; it seems so un-PostScript. It

sometimes happens, however, that it is much clunkier to juggle repeatedly-used stack

elements than to just put the arguments into variables; such is the case here.

Next Page ->

Acumen Journal: PostScript Tech 14

Images in Forms, Part 3

[% Begin our array (puts a mark on the stack)

Here we begin our array. Remember (from your PostScript classes) that the open

bracket merely puts a mark object on the stack. The array will actually be created

later, by the close bracket operator.

{ % Begin our "loop" loop
temp 16384 string readstring % Read data into a new string

We now start an indefinite loop loop that reads incoming data one 16k buffer at a time,

leaving each string of data on the stack. This loop exit upon end-of-file.

The first line in our loop reads data from our source file into a newly-made, 16-kilobyte

string. The readstring operator leaves this string, now full of data, on the operand

stack; it also returns a Boolean object that will be false if we are at end-of-file.

The choice of string size is dictated by two facts:

• A large string size will require fewer strings to hold the data. Remember that our loop

exits with all of the data strings on the operand stack; reading a 1 megabyte image

into 16k strings would leave 67 strings on the stack. If the strings are too small and

the data is too large, you could provoke a stackoverflow error.

• Small strings will minimize wasted VM in the final call to readstring. That final call will

probably return a partially filled string. The string’s length attribute will be set to the

amount of data actually read, but the memory allocated for the string will still be

16k (or whatever). The smaller your strings, the less the possible memory waste.

I chose a 16k string size as a balance between these two requirements.

Next Page ->

Acumen Journal: PostScript Tech 15

Images in Forms, Part 3

not { exit } if % Exit if we are out of data
} loop

The Boolean returned by readstring will be false at end-of-file. We reverse this Boolean

with the not operator and then exit from our loop if the reversed Boolean is true.

This completes our loop, which will repeatedly execute until it reaches the end of the

source file. At this point, the loop exits with all of the data strings piled up on the stack.

]
} def

Our procedure ends by finishing the array construction with a close bracket. This collects

everything off the stack down through the mark, creates an array containing the former

stack contents, and leaves that array on the stack. This array is the return value of our

procedure.

Creating the String Array /ImageData

We next want to use our newly-defined procedure to create a named array of strings

from our image data. We start by pushing the name ImageData onto the operand

stack. This will eventually be the name of our array; for the moment, it’s just a name

object sitting on the stack.

Next Page ->

Acumen Journal: PostScript Tech 16

Images in Forms, Part 3

currentfile /ASCIIHexDecode filter CreateDataArray
2c192d200f1f2213182319181d14171914181b161d121117121212141611
16191211140d0e0e0e13121716131c0d0b161517240d111c12151c13171a
...
a1edfba2f0fda6f2ffa9f5ffaef6ffaef7ffaef7ffaef7ffaef7ffaef7ff
>

Here is where we actually make the data array. Our data source is currentfile to which

we are attaching the ASCIIHexDecode filter. This will convert our incoming ASCII data

into the original binary, which gets stored into the strings. (We don’t want to store the

data in ASCII form because that would double the amount of VM it occupies.)

The ASCIIHexDecode filter also lets us identify the end of the data; the “>” symbol at

the end of the image data is the filter’s end-of-data marker; this will be seen by

ASCIIHexDecode as logical end-of-file. This is where CreateDataArray will stop reading

data and where the PostScript interpreter will resume executing our PostScript code.

def

When CreateDataArray ceases execution, there will be two items left on the stack: the

array of strings created by the procedure and, beneath that, the name ImageData,

which we placed on the stack before executing CreateDataArray. Our call to def places

the name and the array into the current dictionary as a key-value pair.

Next Page ->

Acumen Journal: PostScript Tech 17

Images in Forms, Part 3

Defining the Form JumpForm <<
/FormType 1
...

>> def

Our form definition is almost exactly identical to those in the previous Journal articles.

If you haven’t done so, go back and reread the December 2002 article, which describes

the workings of this form in detail. Here, I’m going to look only at the few lines that

have changed in the form’s PaintProc procedure.

/PaintProc {
pop
userdict /i 0 put % Initialize our index

Our PaintProc procedure, after throwing away its copy of the form dictionary (read

December 2002!) defines a variable, i, having a value of 0. This will be our index into

the string array.

We are breaking a philosophical principal, here, by the way. PostScript forms should be

self-contained; PaintProc should make references only to items defined in systemdict or in

the form dictionary, itself. We are defining i into userdict, which is bad form (so to speak).

Unfortunately, we cannot define i into the form dictionary, itself, since that dictionary is

read-only; PaintProc wouldn’t be able to create the variable, let alone increment it, if i

were defined into the form dictionary. That being the case, we shall simply define i into

userdict and hope no one sneers at us too openly.

Next Page ->

Acumen Journal: PostScript Tech 18

Images in Forms, Part 3

<< /ImageType 1
...
/DataSource {

ImageData i get
/i i 1 add store

} bind
...

>> image

PaintProc calls the image operator, of course; as we

said earlier, we shall use a data acquisition procedure

for that operator’s data source.

Our DAP gets the ith string out of the ImageData

array and then increments i, in preparation for the

next time the procedure is executed.

Use the Form JumpForm execform
0 219 translate
JumpForm execform

Finally, we execute our form twice, producing the

results above.

Pretty cool, eh?

Next Page ->

Acumen Journal: PostScript Tech 19

Images in Forms, Part 3

So, Why is
This Cool? What’s best about this way of getting an image into a form is that it will work on a very

wide range of printers; in fact, this will work on any Level 2 or Level 3 printer that has

enough VM to hold the data. The printer doesn’t need a hard disk; it doesn’t need to

be LanguageLevel 3. There are no particular disadvantages. The other techniques do

have their places, however:

• Saving the image data on a hard disk has the benefit that it uses little VM. The image

data never resides entirely in memory, so image size is not limited by VM. Also, you

could download the image data to the printer’s hard disk ahead of time and have

the data available to all future PostScript files on that printer. (We discussed some-

thing similar to this in the January 2002 Journal.)

(While you’re about it, you could save the entire form definition as a PostScript

Resource on disk, but that’s another article. Maybe. It’s a long story. Take the

Advanced PostScript class.)

• Using ReusableStreamDecode is, to my eye, a clean, satisfying, elegant solution to

the problem. If I were writing PostScript for a known Level 3 printer with adequate

VM, I would use ReusableStreamDecode every time.

Use our array-of-strings technique any time you’re writing for unknown printers. It has

the fewest restrictions.

We could make our technique cooler still by attaching a filter to the Data Acquisition

Procedure, but, darn it, wouldn’t you know, we’re out of space.

Later, perhaps? Return to Main Menu

Acumen Journal: PostScript Tech 20

Images in Forms, Part 3

Acumen Journal 21

Page Title

Schedule of Classes, Feb – Apr 2003

Following are the dates and locations of Acumen Training’s upcoming PostScript and

Acrobat classes. Clicking on a class name below will take you to the description of that

class on the Acumen training website. The Acrobat class schedule is on the next page.

The PostScript classes are taught in Orange County, California and on corporate sites

world-wide. See the Acumen Training web site for more information.

PostScript Classes

PostScript Foundations March 24 – 28 June 23–27 (London)

Advanced PostScript March 3 – 7

PostScript for Support

Engineers February 10 – 14 April 14–18

Jaws Development On-site only; see the Acumen Training website for more information.

PostScript Course Fees PostScript classes cost $2,000 per student.

On-Site Classes These classes may also be taught on your organization’s site. Registration Info →

Go to www.acumentraining.com/onsite.html for more information. Acrobat Classes →

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Onsite.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught quarterly in Costa Mesa, California, and on corporate sites.

Clicking on a course name below will take you to the class description on the Acumen

Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website

regarding setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Troubleshooting with

Enfocus’ PitStop

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (1⁄2-day each) cost $180.00 or $340.00

for both classes. Troubleshooting With PitStop (full day) is $340.00. In all cases, there

is a 10% discount if three or more people from the same organization sign up for the

same class. Registration ->

Return to Main Menu

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_CreateAcroForms.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s

classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:

www.acumenjournal.com/AcumenJournal.html

Return to First Page

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

London PS
Classes Are Back I’ve resumed teaching more-or-less-quarterly PostScript classes in London to accom-

modate students in Europe and the U.K. The first of these is a PostScript Foundations

class scheduled for June 23–27. The exact location is yet to be determined, but it will

be someplace a convenient Underground ride from Heathrow Airport.

Return to First Page

Acumen Journal: What’s New

What’s New?

Journal Feedback

If you have any comments regarding the Acumen Journal, please let me know. In

particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?

Was it well written and understandable? Do you like it, hate it? Does it somehow make

you yearn for distant islands that don’t even have a word for “computer?”

Suggestions for articles. Each Journal issue contains one article each on PostScript

and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF or PostScript?

Feel free to email me about. I’ll answer your question if I can. (If enough people ask the

same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Defining a Batch Edit Sequence

Acumen Journal

Adding Actions to a Sequence

Acumen Journal

Examining Action Details

Acumen Journal

Set Open Options

	btnHome:
	btnPrev:
	btnNext:

