
Table of Contents

The Acrobat User JavaScript: The Acrobat global Object
The Acrobat JavaScript global object allows your Acrobat form to retain information
across Acrobat sessiona. It also allows you to pass information from one form to another.
This is exactly as vastly useful as it sound.

PostScript Tech Color Key Image Masking
PostScript Level 3 introduced the ability to specify that certain colors within an image
should not be painted. This can make it relatively easy to mask out the background of
an image, painting only the parts of the image making up the foreground.

Class Schedule Aug–Sept–Oct

What’s New? Announcing PDF File Content and Structure 2
The second PDF File Content and Structure class will be ready early 2005.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 34 © 2004 John Deubert, Acumen Training

John Deubert’s Acumen Journal, August 2004

Acrobat User

Acumen Journal: Acrobat User 2

The Acrobat JavaScript Global Object
 Variables and functions defined in Acrobat Document Javascripts are considered
“global,” in that they are accessible from within other scripts throughout the PDF
document; any page or form field script can use those variables or functions. They are
global within that document.

However, Acrobat JavaScript has something called a global object, whose properties are
global to Acrobat itself. The global object is a holder for data that is available to any
PDF file open in Acrobat. You can add data to the global object by adding JavaScript
properties to the object; the following will be true of those properties:

• They will be accessible within any script throughout the document.

• They will be accessible within any document currently open in Acrobat.

• They can be made persistent, so that their values will survive from one launch of
Acrobat to the next.

The global object can contain strings (an account name, for example), booleans
(indicating whether the user has registered for support), or numbers (an account balance).

In this article, we shall see how to add our own data to the global object, how to
make that data persist from one launch of Acrobat to the next, and how to access
that data from another Acrobat file.

Next page ->

This month’s article assumes
you have read my book
Extending Acrobat Forms
With JavaScript. It does
assume that that’s all the
experience you have, so
experienced JavaScript
programmers may find the
pace a bit slow. Live with it.

Acumen Journal: Acrobat User 3

The JavaScript Global Object

Review:
Document Scripts Most of the JavaScripts that set up global variables are most appropriate for use

in a Document JavaScript. We discuss Document scripts in quite a lot of detail the
Extending Acrobat Forms… book, but as a very brief reminder:

The Document JavaScripts in a PDF file are executed when that file is opened in
Acrobat. Any variables or functions defined in a Document script are available in
other scripts throughout the Acrobat file.

To define a document script, start with the document open in Acrobat Pro, and then
do the following:

• Select Tools > JavaScript > Document Scripts.

 Acrobat will present you with the JavaScript
Functions dialog box (at right).

• Type a name for the script into the Script Name
field and click the Add button.

Next page ->

Acumen Journal: Acrobat User 4

The JavaScript Global Object

 Acrobat will present you with the
JavaScript Editor dialog box. This
contains a standard text editing
pane into which you can type
your script. This text field will start
out with a template for a function
whose name you supplied for the
script. You can simply erase this
initial template if you don’t want
to use it.

• Type your script into the edit pane and click OK repeatedly until you are back at
your Acrobat document.

Next page ->

Acumen Journal: Acrobat User 5

The JavaScript Global Object

 A Global Counter Consider the Acrobat document pictured
at right, named “Counter.pdf.” The blue text
field in the lower middle of the window
displays the number of times the document
has been opened.

We shall implement this by creating a
global variable named counter. Every
time the document is opened, the value
of counter will be incremented and then
the new value will be displayed in the
text field.

The “0” button in the lower right corner
resets counter to zero.

In the nature of things, our counter
variable must survive across openings of the document; that is, when we close the
Acrobat file, counter must not disappear, as happens to most JavaScript variables.
Furthermore, we want counter to survive even if we shut down the Acrobat application
and then launch it again later.

This is exactly what the Acrobat JavaScript global object is for. Let’s see how to do this.

Next page ->

This month’s sample files
are packaged into the file
Global.zip, available, as
always, on the Acumen
Training Resources page.

This first sample file is
named Counter.pdf.

http://www.acumentraining.com/resources.html

Acumen Journal: Acrobat User 6

The JavaScript Global Object

Creating a
Global Variable The Acrobat global object is a pre-existing object; you don’t make a global object in

your JavaScripts, rather you add new properties to the already-existing object.

You do this simply by referring to the new property:

 global.counter = 0

If the global object doesn’t already have a property named, in this case, counter,
JavaScript will add that property to the object.

This new counter property will be accessible to all documents currently open in
Acrobat, a characteristic we shall examine in more detail shortly.

In our case, it is more important that counter should be persistent, that is, it should
retain its existence and value even if you shut down and then restart Acrobat. We
must explicitly tell Acrobat when a property should persist by calling the global
object’s setPersistent method.

 global.setPersistent(“counter”, true)

The setPersistent method takes two arguments:

• A string - the name of a property of the global object.

• A boolean - Indicates whether the property should be persistent (true) or not (false).

Next page ->

Acumen Journal: Acrobat User 7

The JavaScript Global Object

Our Document Script We create our global counter in a document script attached to the Acrobat file:

if (global.count == null) { // If count doesn’t exist...
 global.count = 1 // …Create it with a value of 1
 global.setPersistent(“count”, true) // & make it persist
}
else // If global.count does exist...
 global.count++ // ...then increment it

var f = this.getField(“txtCount”) // Get the field “txtCount”
f.value = global.count // Set its value to count

In broad outline, this script does the following:

• Check to see if the global property count already exists.

– If not, create the property, setting its value to 1, and then make it persistent.

– If the property does exist, increment it.

• Set the text displayed in the text field (whose name is “txtCount”) to the value of
count.

Let’s look at this in a little more detail.

Next page ->

Acumen Journal: Acrobat User 8

The JavaScript Global Object

Step by Step if (global.count == null) {
 global.count = 1
 global.setPersistent(“count”, true)
}

When we first open this document, we want to do one of two things:

• If the global object doesn’t yet have a count property, meaning we have never before
opened this PDF file, then we need to create the new property with an initial value
of 1 and then specify that the property should persist.

• If the global object does have a count property, we need to increment it.

How do we check to see if count exists?

If the count property does not yet exist, then referring to it will yield a JavaScript null
object. Therefore, our if clause tests for whether count exists by seeing if global.count
is equal to null.

If global.count is null, we inialize a new count property to 1 and then call the setPersistent
method, specifying that the property count should be persistent.

else
 global.count++

If global.count is not null, meaning global already has a count property, then we
increment count with the ++ operator.

Next page ->

Acumen Journal: Acrobat User 9

The JavaScript Global Object

var f = this.getField(“txtCount”)
f.value = global.count

Having either initialized or incremented our new count property, we get a reference
to the txtCount Text field and then set its value (that is, the text that it displays) to the
new value of count.

The global reoperty count is now exactly what we need it to be. It will retain its value
indefinitely. We can open and close the document, close Acrobat and relaunch it, and
count will still keep track of how many times the Counter.pdf document has been opened.

By the way… The global object and its properties reside on your computer, not within the Acrobat
document. If you copy the PDF file to another computer, you will find that count is
recreated and set to 1 when you open the document.

Talking Between
Documents A significant characteristic of the global object—what makes it “global”—is that the

object’s properties are available to any PDF file, not just the file that created the property.

Thus, having added the counter property to global, any other Acrobat file, we can
make a reference to global.count in any other PDF file’s JavaScripts.

Next page ->

Acumen Journal: Acrobat User 10

The JavaScript Global Object

For Example… Below left is another PDF file, CounterWatcher.pdf; this file displays the number of
times that our previous PDF file (Counter.pdf, on the right) has been opened.

The document JavaScript for this file is very simple:

var f = this.getField(“txtCount”)

if (global.count == null)
 f.value = “--”
else
 f.value = global.count

We check to see whether global.count exists and, if so, display its value in the text field.
 Next page ->

Acumen Journal: Acrobat User 11

The JavaScript Global Object

Note globalcounter.pdf does not define global.count; that property was created by
counter.pdf and is simply referenced here in the second file.

Actually, because we made global.count persistent, the original counter.pdf file doesn’t
even have to be open for our counterwatcher.pdf to work; persistent properties are
always available to any PDF file at any time. Had we not made count persistent, it
would have been available to any PDF file only as long as counter.pdf was open.

A Final Refinement:
Instant Notification One minor problem with CounterWatcher.pdf is that it checks the value of global.count

and resets the number displayed in the Text field only when it is opened. If you close
and then reopen counter.pdf while Watcher is open, the latter file will continue to display
the old value.

The global object allows us to specify that a particular JavaScript function should
be called whenever a particular global property changes value; such a function is
referred to as a callback function.

For example, among the sample files for this Journal article is the file CounterWatcher2.pdf.
This is identical to CounterWatcher.pdf except for an additional document script, listed
on the next page.

Next page ->

Acumen Journal: Acrobat User 12

The JavaScript Global Object

Creating a Callback global.subscribe(“count”, CountChanged)

var fldTxtCount = this.getField(“txtCount”)

function CountChanged(newCount)
{
 fldTxtCount.value = newCount
}

The subscribe method This script starts with a call to the global object’s subscribe method:

 global.subscribe(“count”, CountChanged)

Global.subscribe takes two arguments:

• A string containing the name of a global property (“count”, in our case).

• The name of a JavaScript function (CountChanged, for us).

Whenever the property you specify changes its value, Acrobat will call the function,
passing it the new value of the property.

Next page ->

Acumen Journal: Acrobat User 13

The JavaScript Global Object

In our case, when global.count changes value, Acrobat will execute the CountChanged
function, which will receive the new value of count as its argument.

function CountChanged(newCount)
{
 fldTxtCount.value = newCount
}

Our CountChanged function sets the value (the text displayed) of the Text field to the
new value of count.

Note that we never directly call CountChanged in any of the JavaScripts in our PDF file;
rather, we have instructed Acrobat to call the function automatically whenever
global.count changes value.

A Minor Mystery We’ll finish our discussion with something I don’t entirely understand about this final
JavaScript.

Notice that our script gets a reference to txtCount in a separate line of JavaScript outside
of the CountChanged function.

 var fldTxtCount = this.getField(“txtCount”)

Normally, I would prefer this line to appear as part of the function definition, but here
I have pulled it outside the function to work around a mysterious problem.

Next page ->

Acumen Journal: Acrobat User 14

The JavaScript Global Object

The this.getField method always seems to fail inside a global variable callback function,
such as CountChanged. Acrobat reports that this.getField doesn’t exist. It appears that
the JavaScript this keyword doesn’t refer to the current Doc object (”this document”)
at the time the callback function is executed.

As a workaround, I get the reference to the text field ahead of time, outside of the
callback function; this works perfectly well.

I should say that the Acrobat JavaScript documentation indicates that this.getField
should behave normally inside a callback function, so I don’t actually know what the
problem is here. If anyone can give me more detail on why this.getField consistently
fails inside a callback function, I’d very much like to hear it.

Return to Main Menu

PostScript Tech

Acumen Journal: PostScript Tech 15

Color Key Image Masking
A common technique in video is to
photograph an actor against a blue (or
other color) screen and then electronically
replace the blue areas in the video with
some other picture. This is how you get
television weathermen superimposed
against the weather map, for example.

PostScript languagelevel 3 allows you to
do this with PostScript images. You can
print an image as a color-key masked image,
declaring that one color or range of colors
(blue, in the example at right) shouldn’t be
printed, allowing the background to show.

This can be a very powerful technique and
is worth examining.

Let’s see how to do it.

Next page ->

Acumen Journal: PostScript Tech 16

Color Key Image Masking

Background:
PostScript Images As you remember from your PostScript class, images are printed with the PostScript image

operator. In Level 2 and 3, this operator takes a single dictionary—an “image dictionary”—
as its argument:

<< /ImageType 1
 /Width 450
 /Height 338
 /BitsPerComponent 8
 /ImageMatrix [450 0 0 -338 0 338]
 /DataSource currentfile /ASCIIHexDecode filter
 /Decode [0 1 0 1 0 1]
>> image
4C65BF4...

This article won’t describe in detail the key-value pairs in the image dictionary; check
your old student notes for complete coverage. Briefly, however:

/ImageType 1

This indicates what kind of image this is. Normal, scanned images are of type 1.

/Width 450
/Height 338

These indicate the number of image pixels in each scanline and the number of scanlines
in the image. Next page ->

Acumen Journal: PostScript Tech 17

Color Key Image Masking

/BitsPerComponent 8

This is the number of bits associated with each color component in the image data. A
value of 8 for an RGB image indicates that each red, green, and blue will consist of an
8-bit value.

/Decode [0 1 0 1 0 1]

The Decode array defines the mapping of data values (varying from 0 to 255, say) to
color values. The array contains a pair of color values for each color component in the
image’s data; an RGB image will have three pairs of numbers. Each pair of numbers
indicates the color value that corresponds to the smallest and largest data values.

Thus, for an 8-bit image, a Decode pair 0 1 indicates that data values 0 to 255 should
be mapped to RGB color values 0 to 1.

/DataSource currentfile /ASCIIHexDecode filter

DataSource is the source of the image data. It may be a file object, a string, or a data
acquisition procedure. (For the last, I refer you to your PostScript notes; it’s a long story.)

In our case, the DataSource is currentfile with the ASCIIHexDecode filter attached; the
image operator will read Hexadecimal image data in-line with our PostScript code.

Incoming image data isinterpreted in terms of the current color space. To print an RGB
image, you would need to set the color space to DeviceRGB before calling image.

Next page ->

Acumen Journal: PostScript Tech 18

Color Key Image Masking

/ImageMatrix [450 0 0 -338 0 338]

ImageMatrix is a transformation matrix that specifies the size and position of the final
printed image, transforming the printed image’s position in User Space back to the
original data in Image Space. It’s a long story; look in your student notes.

As a help, the image matrix will almost always be:

 [width 0 0 –height 0 height]

where width and height refer to the width and height of the image in pixels, not the
size of the printed image.

Clipping an Image Level 2 provided no support for masked images; if you want to mask out the sky in
our image using only PostScript Level 2 commands, you will need to use the clip
operator. This will be a bit tedious:

1. Construct a very complex current path
that snakes between pixels in the image,
enclosing those you want to appear on
the page. This reqiores a great many lineto’s.

2. Call the clip operator.

3. Call the image operator, painting the image on the page. Only
those parts of the image that fall inside the clipping path will be painted.

Next page ->

Acumen Journal: PostScript Tech 19

Color Key Image Masking

The clipping path technique works perfectly well, though it can be very slow in some
machines and I would expect it to be prone to limitcheck errors if memory is skinny.

Masked Images PostScript LanguageLevel 3 introduced support for masked images; these contain not
only image data, but information indicating what parts of the image should actually
be printed.

PostScript supports two kind of masking: explicit and color key masking.

Explicit Masking With explicit masking, the image is made up of two types of data:

• Image data - The data for the actual scanned image.

• Mask data - Information (usually 1-bit image data) indicating what part of the
image data should actually be painted on the page.

The conceptually simplest version of explicit masking is the case in which the mask
consists of a complete 1-bit image,
completely unrelated to the
scanned image. One of the colors
in the mask (black or white, as you
choose) indicates the area to be
printed, as at right.

This type of masking is more complicated than we can describe here, alas.

Next page ->

Image Mask Masked Image

Acumen Journal: PostScript Tech 20

Color Key Image Masking

Color Key Masking Color key masking allows you to specify a color or range of colors in the image data
that should not be painted. This type of masking is most useful for pictures of some
subject taken against a background of some known color.

Simple Example To start our discussion of color key masking, consider the following code that draws a
regular, unmasked image against a light blue background:

0 .75 1 setrgbcolor
90 90 120 120 rectfill

/DeviceGray setcolorspace
100 100 translate
100 100 scale
<< /ImageType 1
 /Width 21
 /Height 21
 /BitsPerComponent 8
 /Decode [0 1]
 /ImageMatrix [21 0 0 21 0 0]
 /DataSource dataStr % The code that loaded dataStr with
>> image % data was omitted for brevity

showpage Next page ->

Sample Files

As usual, this month’s exam-
ples are available on the
Acumen Training Resources
page. Look for the file
ColorKeyMasking.zip.

Not Complete Code

This code sample is not
complete. The full program,
on the resources page, starts
by filling a string, dataStr, with
data for the radial gradient
seen in the illustration.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech 21

Color Key Image Masking

Some Details Here’s what this program does, in light detail:

0 .75 1 setrgbcolor
90 90 120 120 rectfill

We start by drawing the rectangular background, filled with greenish-blue.

/DeviceGray setcolorspace

We set the colorspace to DeviceGray, to match the type of image data we have. Note
that the earlier call to setrgbcolor set the colorspace to DeviceRGB as a side effect.

100 100 translate
100 100 scale

These two operators specify the position and size of the printed image. The translate
operator specifies the position of the lower left corner of the image; scale specifies
the size of the printed image, in PostScript units.

<<
 ...
>> image

Finally, we make the call to the image operator, in every way similar to our earlier example.

Next page ->

Acumen Journal: PostScript Tech 22

Color Key Image Masking

ImageType 4 To apply color key masking to this image, we need only make two changes to the
image dictionary in our preceding example:

• Change ImageType to 4

• Add a MaskColor entry that specifies what color should be unpainted.

Omitting a Color Our call to image now looks like this:

<< /ImageType 4
 /MaskColor [109]
 /Width 21
 /Height 21
 /BitsPerComponent 8
 /Decode [0 1]
 /ImageMatrix [21 0 0 21 0 0]
 /DataSource dataStr
>> image

The MaskColor entry is an array whose contents make up a color specification in the
current color space; this is the color that will be left unpainted when the image is
printed. In our case, this array has only one number in it, since the image is made up
of grayscale data; had this been an RGB image, the array would contain three values.

Next page ->

Acumen Journal: PostScript Tech 23

Color Key Image Masking

Note that the color values in the MaskColor array are actual data
values. Since our image is made up of 8-bit data, our grayscale
value in MaskColor must be a number between 0 and 255.

Our particular MaskColor array contains the value 109, so all pixels
that had a data value of 109 were left unpainted. At right you can
see the blue background showing through the masked-out pixels.

Masking a Range
of Colors MaskColor can supply a range of color values that should be masked out. You need

simply provide a pair of numbers for each color components, indicating the beginning
and end of the set of values that should be unpainted.

<< /ImageType 4
 /MaskColor [100 125]
 /Width 21
 /Height 21
 /BitsPerComponent 8
 /Decode [0 1]
 /ImageMatrix [21 0 0 21 0 0]
 /DataSource dataStr
>> image

Now, any pixels whose data lies on the range 100–125 will be unpainted, as above.

Next page ->

Acumen Journal: PostScript Tech 24

Color Key Image Masking

Color-Masking a
Photograph Let’s see how this applies to the task of

masking out the blue sky in the photo-
graph at right.

In a real situation, you would have likely
taken a picture of your subject against
a backdrop of a known color. The minor
challenge in our photograph is that the
sky is made of a range of colors, different
shades of blue. Our ColorMask array must
specify the range of RGB values that look
blue.

Practically speaking, this means we want to remove all pixels that have a relatively
large amount of blue and relatively little red and green. Determining what MaskColor
values give the best results in this case requires a little trial and error, but isn’t particularly
difficult.

The masked version of this image is on the next page.

Next page ->

Not too realistic

This is probably not a very
realistic example. The type
of image you with which
you would normally use
color-key masking would
be a picture taken specifi-
cally for the purpose, such
as a model against a blue
backdrop.

Acumen Journal: PostScript Tech 25

Color Key Image Masking

<< /ImageType 4
 /MaskColor [0 150 0 150 150 255]
 /Width 450
 /Height 338
 /BitsPerComponent 8
 /ImageMatrix [450 0 0 -338 0 338]
 /DataSource currentfile /ASCIIHexDecode filter
 /Decode [0 1 0 1 0 1]
>>
image

As before, our MaskColor values are intend-
ed for the 8-bit RGB data that makes up
our image. In this case, a pixel will not be
painted if its red and green values are 150 or
below and if its blue value is 150 or above.

Caveat The only real disadvantage to color masked images is that they require PostScript
LanguageLevel 3; you should not use them in any PostScript code that needs to
be used with a broad range of printers, since there are still many PostScript Level 2
devices out there.

Otherwise, color masked images are a powerful, easy tool in the PostScript toolbox.

Return to Main Menu

Schedule of Classes, Aug – Oct 2004
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class
on the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

 Acrobat Classes

PDF File Content
and Structure

Aug 30–Sep 2

Oct 11–15

PostScript
Foundations

Aug 2–6

Variable Data
PostScript Aug 9–13

Advanced
PostScript Aug 16–20

PostScript for
Support Engineers Sep 20–24

Jaws Development On-site only

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate
sites. Clicking on a course name below will take you to the class description on the
Acumen Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
organization sign up for the same class.

 Registration ->

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

New PDF Class I am in the planning stages of a second four-day PDF class, provisionally PDF File
Content & Structure 2. Like the first course in the series, this class will be an engineer’s
class in the structure and content of a PDF file. It will presume you have taken the first
class or have equivalent knowledge. Also like the first class, this course will restrict
itself to those parts of the PDF specification that apply to printed documents. Thus, I
will not be talking about anything having to do with animation, sound, etc.

A preliminary list of topics, in no particular order, are below. Not all of these topics may
make it to the final class and I am actively seeking comments on topics that should
be added to this list; if you have strong feelings that something should be added to
or dropped from this list, send an email to john@acumentraining.com.

Preliminary Topic List Overprinting File Spec Patterns
CID Fonts Masked Images Composite Fonts
Halftones Digital Signatures Linearized PDF
Marked Content AcroForm Stroke Adjustment
Rendering Intents Transfer Functions Halftones
Smooth shading Shape dictionaries Text Knockout
Reference XObjects Layers Object streams
Cross reference streams Name Dictionaries More on data structures
BX & EX Return to First Page

What’s New?

Acumen Journal: What’s New?

mailto:john@acumentraining.com

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you yearn
for the simpler, easier days of your youth?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, PDF, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

System Name Table

	btnMagMinus 8:
	btnMagMinus 6:
	btnNextPg:
	btnHome:

