
Page Title

Table of Contents

The Acrobat User Making PostScript for PDF
Behind most professional-grade PDF files is a PostScript file. What settings should you
pick in the Macintosh and Windows Print dialog boxes when you make a Distiller-bound
PostScript file? We’ll do Macintosh this month and Windows next.

PostScript Tech Case statements in PostScript
Because PostScript has no case construct, many PostScript programs contain ugly, nested
ifelse’s. You can replace these with an elegant case-equivalent using dictionaries.

Class Schedule April-May-June
Where and when are we teaching our Acrobat and PostScript classes? See here!

What’s New? UK classes restarted. Class on Jaws development launched.
We’re resuming periodic classes in London. Announcing a new class in using the Jaws
PostScript interpreter.

Contacting Acumen Telephone numbers, email addresses, postal address, all ways of getting to Acumen.

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, © 2001 John Deubert, Acumen Training

John Deubert’s Acumen Journal, April 2001

Acumen
Training

Acrobat Article Title - Page 1

Making PostScript for PDF
Behind every successful PDF file is a successful PostScript file. If you are making
professional-grade PDF files, you are almost certainly creating a PostScript file and
handing it to Acrobat Distiller, PDF Creator, or their equivalent.

What about that PostScript file? What settings should you choose in your Print dialog
box so that your PostScript file will convert into a successful PDF file? Fonts embedded
or not? How should TrueType fonts be handled? Binary or ASCII?

This month and next, The Acrobat User looks at how to make a PostScript file appropriate
for handing to Distiller. We’ll look at the Mac and Windows print controls and also look
at QuarkXpress’ print settings.

This month, we’ll look at the Macintosh and QuarkXpress. We’ll pick up Windows’ controls,
which are a bit more extensive, next month.

Next Page �

The Acrobat User

Acumen Journal: The Acrobat User

Making PostScript
on the Mac When you select Print from your

Macintosh application, you are faced
with the familiar dialog box at right.

To print your document to a PostScript
file, you simply select File from the
Destination menu.

When you’re making a PostScript file
for PDF, you need to pay attention to
some of the controls accessible
through the Print dialog box’s main
pop-up menu.

In particular, you want to go to the Save as File controls.

Next Page �

Acumen Journal: Acrobat User

Acrobat Article Title - Page 2Making PostScript for PDF - Page 2

Save as File This set of controls dictate the
characteristics of the PostScript file
created by the Macintosh print driver.
The Mac pays attention to these con-
trols only if we have selected file for
the destination of the print job.

There are four sets of controls here;
lets see how we should set each of
them.

Next Page �

Acumen Journal: Acrobat User

Acrobat Article Title - Page 3Making PostScript for PDF - Page 3

Format This menu specifies to what kind of file this document
should be printed. You can choose to save the
document as a PostScript job, three flavors of EPS
and directly as a PDF file.

You should pick PostScript Job. This tells the print
driver to save to disk a PostScript file appropriate for sending to a printer.

The EPS choices should be avoided because Encapsulated PostScript files are not intended
for sending directly to a print device; they’re designed to be embedded in some other
document. As a consequence, they may not have fonts embedded, they may not specify
a page size, they may not even generate a page. Some or all of these weaknesses will
roll over into the PDF file.

Next Page �

Acumen Journal: Acrobat User

Acrobat Article Title - Page 4Making PostScript for PDF - Page 4

What about “Acrobat PDF?” The Acrobat PDF choice is tempting.
If you choose this format, the dialog
box’s controls change to a subset of
the Distiller job options.

When you click the Save button, the
print driver will create a PostScript
file, launch Acrobat Distiller, set the
job options as you have specified,
and tell Distiller to convert the
PostScript file to PDF.

Unfortunately, the subset of controls
is too small. There are several very important job option controls that don’t appear here.
In most circumstances, you will be safer making a PostScript file and explicitly converting
that to PDF.

Next Page �

Acumen Journal: Acrobat User

Making PostScript for PDF - Page 5

PostScript Level This pair of radio buttons allow you to choose
what set of PostScript language features may
be used in the PostScript file.

If you are converting this file to PDF, you should pick Level 2 and 3. All other things
being equal, a PostScript Level 2 or 3 file will be smaller and execute faster than the
Level 1 equivalent. Since all current PostScript-to-PDF converters understand at least
PostScript Level 2, there is no good reason for picking Level 1 Compatible.

Data Format These radio buttons affect the format in which image data and,
in some circumstances, fonts are embedded in the PostScript file.
If you have worked with PostScript files for a long time, you tend
to think of ASCII as large but safe and binary as more compact but a little risky.

This doesn’t apply to PostScript files for PDF. Choose Binary. No PDF creator has any
trouble with binary data in PostScript files.

Next Page �

Acumen Journal: Acrobat User

Making PostScript for PDF - Page 6

Font Inclusion This final pop-up menu asks what
fonts you want to have embedded in
the PostScript file.

The correct answer is: All.

The only way to ensure that your fonts are correctly embedded in the final PDF file is to
embed them in the PostScript.

Actually, Distiller will embed Type 1 fonts into the PDF file if they are installed on your
computer system, regardless of whether they are embedded in the PostScript file. Jaws
Systems’ PDF Creator, on the other hand, wants Type 1 fonts embedded in the
PostScript file.

TrueType fonts must be embedded in the PostScript if they are to be embedded in the
PDF file.

All this to say: choose All.

That’s It Those are all the controls in the Macintosh print driver that affect the final PDF files you
create. However, many of us use applications such as QuarkXpress and PageMaker to
create our PDF documents. These applications give us controls in addition to the standard
print drivers’.

We’ll take a look at the controls for QuarkXpress. These are typical of the controls
supplied by such high-end applications.

Next Page �

Acumen Journal: Acrobat User

Making PostScript for PDF - Page 7

QuarkXpress
Controls When you select Print from the

QuarkXpress File menu, you are
faced with the multi-tab dialog box
at right.

To set up QuarkXpress for making
your PostScript file, you will need
to visit three places in this dialog
box:

• Click on the Printer… button and
set the standard Macintosh
controls.

• Go to the Setup tab and specify a PPD file.

• Visit the Options tab and specify ASCII vs. Binary, OPI image omission, etc.

Let’s look at these in detail…

Next Page �

Acumen Journal: Acrobat User

Making PostScript for PDF - Page 8

®

Printer… Button Clicking on the Printer… button, you
get access to the standard Macintosh
Print dialog box. You need to go to the
Save as File controls and set these
as we discussed earlier:

• Format: PostScript Job

• PostScript Level: Level 2 & 3

• Data Format: Binary

• Font Inclusion: All

And, oh, by the way:

• Destination: File

This last is necessary if QuarkXpress is to send its output to a file.

When you click on the Save button, you will be asked for a name for the PostScript file
and then returned to QuarkXpress’ Print dialog box.

Next Page �

Acumen Journal: Acrobat User

Making PostScript for PDF - Page 9

Setup Tab In the Setup tab, there are only
two controls to which you need to
pay much attention when making a
PDF-bound PostScript file:

Printer Description Here you select the PPD file that
QuarkXpress will use to generate
its PostScript. The best choice here
is any Acrobat Distiller PPD file.

(Acrobat installs this PPD file in
your Printer Descriptions folder
upon installation.)

This is especially important if your document has color in it; QuarkXpress replaces all
color with grays if it thinks it is printing to a black-and-white device. Distiller and its
cousins all look like color devices to QuarkXpress.

Paper Size/Width/Height On occasion, QuarkXpress changes the paper size when you select a Distiller PPD file.
Check and make sure these three controls reflect the page size you want for your final
PPD file.

Next Page �

Acumen Journal: Acrobat User

Making PostScript for PDF - Page 10

Options Tab In this set of controls, we need to
pay attention to four controls:

Output Here you specify
how QuarkXpress
should print illus-
trations. You are given a choice
among Normal and two draft quali-
ties. Choose Normal.

Data Should image data be in ASCII or
Binary? Choose Binary. Again, the normal reasons for picking ASCII (or
the somewhat more efficient Clean 8-bit) don’t apply if you’re turning
the PostScript file into PDF.

OPI Unless you are actually planning to print the final PDF file from an
OPI server, you should select Include Images.

Full Resolution TIFF Output This should be turned on. It prevents QuarkXpress from downsampling images that it
thinks have too much data.

Next Page �

Acumen Journal: Acrobat User

Making PostScript for PDF - Page 11

That wasn’t too
bad That’s it. There are several controls requiring attention, but they’re pretty straightfor-

ward in their meaning and use.

Other Applications Other high-end applications (PageMaker, Corel Draw, etc.) give you controls similar to
those in QuarkXpress. Look over their Print dialog boxes and set the ASCII/Binary and
other controls as we’ve discussed here.

Microsoft Windows?
Next Month. Windows actually gives you much more control over the characteristics of your

PostScript files. There’s enough there that we’ll put that off until next month.

Something to look forward to!

Acumen Journal: Acrobat User

Making PostScript for PDF - Page 12

Case Statements in PostScript
If you write a lot of hand-written PostScript code, you occasionally find yourself having
to decide among a number of alternative activities, determined by, say, the value of
some variable. In C, this switching among possible tasks is best handled by a case
statement: depending upon the value of x, do one of a number of things.

Unfortunately, PostScript doesn’t implement a case equivalent, so we end up handling
this with a set of nested ifelse statements, which looks very nasty in code:

x 5 eq

{ DoX5 }

{ x -3 eq

{ DoX-3 }

{ x -3 lt

{ DoXLessThan-3 }

{ DoDefault } ifelse

} ifelse

} ifelse

This can be amazingly ugly to modify and maintain, especially if there are a large
number of possible x values you want to trap.

It turns out that you can replace this with a very fast, very clean equivalent of case
that uses dictionaries to hold the action procedures and to search. This is what we’ll
discuss this month: using dictionaries to do a case equivalent

Next Page �

PS Article Title - Page 1

Acumen Journal: PostScript Tech

PostScript Tech

Variable-Data
Printing Consider the variable-data printing world. These folks read data from a database and

use PostScript code to generate quite elaborate documents unique to each set of data
in the database. Typically, they will have a large PostScript header that defines procedures
that do the work, followed by the invocation of some “DoItNow” routine, followed by
newline-delimited data taken from the database.

In outline, the PostScript code looks like this:

Procedure definitions

...

DoTheReports

DataSet1

...

DataSet2

...

Usually, the first line of data in each set determines what data to expect for that set
and what, exactly, to do with that data.

For our discussion this month, let us pretend that we are generating financial reports
for client corporations. The first line of data in each set is the name of the company to
whom the current report will be sent. Most companies get a generic report, but we
want to special-case some company names so we can do something specific to them.

If the first line of data in each set is the name of the company, our PostScript code
using ifelse would look something like this (stretches across two screens; sorry):

Next Page �

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 2

The Old Way… /str 128 string def

% Company-specific procedures

/PottyProc { (PottyProc) = } bind def

/MonstrousProc { (MonstrousProc) = } bind def

/CrazyProc { (Crazy) = } bind def

/DefaultProc { (Default) = } bind def

/HandleCompany % (CompanyName) => ---

{

dup (Hot Doggie Portapotties) eq % Hot Doggie?

{ PottyProc } % Yes

{ dup % Otherwise...

(Monstrous Heights Real Estate) eq % Monstrous Heights?

{ MonstrousProc } % Yes

{ % Otherwise...

(Out of My Mind, Inc.) eq % Out of My Mind?

{ CrazyProc } % Yes

{ DefaultProc } % Otherwise, do default proc

ifelse

}

ifelse

}

ifelse

} bind def

Next Page �

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 3

The Old Way, cont’d /DoReports

{

{ currentfile //str readline % Get company name from input stream

not { pop exit } if % Leave if no more companies

HandleCompany % Do something with this co.’s data

} loop % Do it all again

} bind def

DoReports % Invoke the report procedure

Hot Doggie Portapotties % Data.

Albequerque Turkey % Usually, each company name would be

Monstrous Heights Real Estate % followed by data specific to that

Out of My Mind, Inc. % company.

Gorilla My Dreams Parties

Look long and hard at the nested ifelse statements on the previous page and imagine
how very ugly this would look if there were, say, ten companies we wanted to special
case. Adding additional companies would also be very trying and trouble-prone.

(By the way, all of the code for this month’s article is available on the Acumen Training
website’s resources page: www.acumentraining.com/resources)

Next Page �

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 4

http://www.acumentraining.com/resources.html

The New Way So, let’s fix things.

What we’re going to do is create a dictionary to hold our company-specific procedures.
Within this dictionary, the keys will be strings (not names) holding the company names
as they will appear in the data stream. Associated with each company name will be the
procedure that carries out company-specific activity. We’ll also include a Default procedure
for companies not in our special list.

In our new version of the sample program, we’ll do the following:

• Read a company name from the input stream

• Check to see if that company name exists as a key in our dictionary

• If so, we’ll execute that company’s special procedure

• Otherwise, we’ll execute the Default procedure.

The known Operator Key to this will be the known operator:

<<dict>> key known => bool

This checks for the existence of a key in a given dictionary, returning a boolean true if
the key exists, false otherwise.

Our new code looks like this:

Next Page �

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 5

The New Way… /str 128 string def

/CompanyProcs % This dictionary holds our company-specific procs

<< % Note the keys are strings, not names. This is OK.

(Hot Doggie Portapotties) { (PottyProc) = }

(Monstrous Heights Real Estate) { (MonstrousProc) = }

(Out of My Mind, Inc.) { (Crazy) = }

/DefaultProc { (Default) = }

>> def

/HandleString % (str) => ---

{

//CompanyProcs exch % Get the CompanyProcs dictionary

2 copy known not % If our company name isn't known...

{ pop /DefaultProc } if % ...replace it with the name "DefaultProc"

get exec % Get the procedure & execute it.

} bind def

Next Page �

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 6

The New Way, cont’d /DoReports

{

{ currentfile //str readline % Get company name from input stream

not { pop exit } if % Leave if no more companies

HandleCompany % Do something with this co.’s data

} loop % Do it all again

} bind def

DoReports % Invoke the report procedure

Hot Doggie Portapotties % Data.

Albequerque Turkey % Usually, each company name would be

Monstrous Heights Real Estate % followed by data specific to that

Out of My Mind, Inc. % company.

Gorilla My Dreams Parties

Comments Notice that the DoReports procedure hasn’t changed. It’s still just reading the company
names and handing them to HandleCompany.

HandleCompany is dramatically simpler. Four lines of PostScript code, as formatted
here, and no ifelse’s in sight. Adding a new company to the “Specials” list entails simply
adding one more key-value pair to the CompanyProcs dictionary.

Furthermore, this executes much faster than the original HandleCompany. The comparison
of each name with the list of specials is carried out as a hash search by the known
operator, rather than a serial search in our PostScript code.

Next Page �

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 7

Dictionary keys and
PostScript data types One characteristic of this code that is significant in its implication is the fact that each

key in the CompanyProcs dictionary is a string (except for /Default), rather than the
usual literal name.

Keys in a PostScript dictionary can be any kind of data: numbers, strings, executable
names, anything. In our sample code, we switched off the company names, which
were strings. We could have keyed off of zip codes:

/CompanyProcs

<<

10012 { (PottyProc) = }

92629 { (MonstrousProc) = }

40263 { (Crazy) = }

/DefaultProc { (Default) = }

>> def

I even know one clever chap who created a dictionary that used operator definitions (not
operator names) as the keys. He used this to selectively override PostScript operator
definitions in systemdict. Very sophisticated use of dictionaries.

Next Page �

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 8

A PostScript case
Statement Using this technique, it is relatively easy to write a generalized case procedure. I’ll

leave this as a challenge for the readers; write a PostScript case procedure:

<< dict >> obj case => ---

This procedure takes a dictionary and an object from the stack. If the object exists as
a key in the dictionary, it executes the corresponding procedure. Otherwise, it executes
a default procedure with some standard name. If a default procedure is not supplied,
case should exit gracefully.

My version of case is included among the files for this month’s Journal on the Acumen
Training website. (Again, www.acumentraining.com/resources.)

Next Page �

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 9

http://www.acumentraining.com/resources.html

Dictionary
Underuse Dictionaries are underused by most PostScript programmers. They create dictionaries

for forms, images, and patterns; they’ll put their own working dictionaries on the
dictionary stack; and that’s about it.

The fact is, dictionaries are amazingly versatile. In this article we used them for fast
switching among alternative operations. But dictionaries can also be used where other
languages would use structures, to hold a variety of data that should travel around
together.

You can even do something very like object oriented programming in PostScript, using
dictionaries as the basis for your objects. (Methods, properties, inheritance, overload-
ing, you can pretty much do it all!) This would be another good exercise for the reader.

Or maybe a future Journal article.

Acumen Journal: PostScript Tech

PostScript Case Statements - Page 10

Schedule of Classes, Apr 2001 - Jun 2001
Following are the dates and locations of Acumen Training’s PostScript and Acrobat
classes. Clicking on a class name below will take you to the Acumen training website to
the description of that class.

The PostScript classes are taught in Orange County, California, near the Orange County
airport, and in London at Adobe Systems’ office near Heathrow.

PostScript Classes
PostScript Foundations London, UK May 7 - 11 Orange Co., CA June 4 - 8

Advanced PostScript Orange Co., CA Apr 23 - 26 Orange Co., CA July 16 - 19

PostScript for Support
Engineers Orange Co., CA May 14 - 30 London, UK June 18 - 22

Jaws Development Orange Co., CA Apr 30 - May 3

For more classes, go to www.acumentraining.com/schedule.html

PostScript Course Fees PostScript classes cost $1,750 per student
Registration �

Acrobat Classes �

Page Title

Acumen Journal: Class Schedule

PostScript Class Schedule

http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/schedule.html
http://www.acumentraining.com/Descr_Jaws.html

Acrobat Class Schedule
Acumen training teaches three users’ classes in Adobe Acrobat (the links below will
take you to the Acumen website’s complete description):

Acrobat Essentials This class teaches the student how to make perfect PDF files. It includes complete
coverage of the meaning and proper settings of all of the Distiller Job Options.

Interactive Acrobat Here we show you how to add bookmarks, links, buttons, sounds, movies, form fields,
and other interactive features to an Acrobat file.

Troubleshooting with
Enfocus’ PitStop This class shows the student how to use all of the capabilities of this popular editing

and preflight software.

On-site Only The Acrobat classes are taught only on corporate sites. If you have an interest in any
of these classes for your group, please see the Acumen website regarding setting up
an on-site class.

Back to PostScript Classes

Return to First Page

Page Title

Acumen Journal: Class Schedule

Acrobat Class Schedule

http://www.acumentraining.com/Descr_AcroEss.html
http://www.acumentraining.com/Descr_IntAcro.html
http://www.acumentraining.com/Descr_PitStop.html

Contacting John Deubert at Acumen Training

For more information For class descriptions or for any other information about Acumen’s classes:

Web site: http://www.acumentraining.com

email: john@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact us any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 25142 Danalaurel, Dana Point, CA 92629

Back issues Back issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to First Page

Page Title

Acumen Journal: Contacting Acumen Training

Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
mailto:registration@acumentraining.com
http://www.acumentraining.com/Registration.html
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

U.K. Classes are
Back After a lengthy absence, the periodic PostScript classes are back at Adobe Systems’ site

near Heathrow airport. Acumen Training will be conducting PostScript classes several times
a year beginning with a PostScript Foundations class this May and PostScript for
Support Engineers in June. If you are in the United Kingdom or Europe, these classes
may be much more convenient than coming to California. See the class schedule for
upcoming classes.

New Class:
Jaws Development Acumen training has developed a new, four-day class in working with the Jaws PostScript

interpreter. If you use this interpreter from Jaws Systems, this class will teach you how
to write device drivers, device classes, PostScript operators, and to use all the other
features of this versatile interpreter.

Requirements & Schedule Students need to be proficient in C and should have reasonable knowledge of PostScript.
(The PostScript Foundations class is highly recommended; you can better understand
the pagedevice structure if you know what the PostScript setpagedevice does.)

The first scheduled class starts April 30. This class will be taught quarterly in Costa
Mesa, California and, of course, on corporate sites. Go to the Acumen Training website
for a course description.

Page Title

Acumen Journal: What’s New

What’s New?

http://www.acumentraining.com/Descr_Jaws.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let us know. In
particular, we are looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Did you like it, hate it, or did it make you want
to make faces at passers-by? How could we make it better? Do you like the PDF format?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like us to address?

Questions and Answers. We are planning a Q&A section for future issues. Do you
have any questions about Acrobat, PDF or PostScript?

Please send any comments, questions, or problems to:

journal@acumentraining.com

Return to Menu

Page Title

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnHome:
	btnPrev:
	btnNext:

