
Acumen Journal, Issue 48 © 2012 John Deubert, Acumen Training	�Acumen Journal, Issue 68 © 2013 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, August 2013

Table of Contents

The Acrobat User
Signing Documents in Acrobat XI
Adobe has made it easy to sign pdf documents without having to do any work ahead of time; you no longer
need a certificate or other complicated preparation.

PostScript Tech
Deep Copying PostScript Objects
The dup operator, when applied to a string, array, or other composite object, just makes a copy of the
 reference to the object's actual value. Every once in a while, you need to make a clone of the object that has
a separate, though identical, value. Doing it right gives us an opportunity to do some recursive programming.

Class Schedule
Sept-Oct-Nov

What’s New?
New First Steps guides in the works: PostScript and PDF
Available soon on Amazon.com.

 Contact John at Acumen Training
If you want to ask a question, sign up for a class, arrange an on-site, or arrange some contract
programming, here's where to do it: telephone number, email address, postal address.

1.0

Creative Expertise in PostScript, Acrobat, and PDF

T
Acumen

raining
& Services

PostScript
First Steps in...

John Deubert
Programming

Quality Electronic Documentation
from Acumen Training

GuidesDEQ ™

A beginner’s
short introduction to
programming in the
PostScript language

®

http://www.acumentraining.com/QEDGuides

Acumen Journal: PostScript Tech		 2

PostScript Tech

Deep Copying PostScript Objects
As you know, arrays, dictionaries, and strings in PostScript are called composite objects because their values
reside in vm; an array object on the stack, for example, contains a reference (think of it as a pointer into vm)
to the array's actual value. This is as distinct from a simple object, such as an integer, that is self-contained, its
value living within the object, itself (Figure 1).

When you do a dup of an array, what you are really duplicating is the array object; you now have two objects
on the stack with pointers to the same place in memory (Figure 2). You can demonstrate this is so with the
following code:

/array1 [1 3 6] def

/array2 array1 dup exch pop def		 % array2 is a dup of array1

array2 1 16 put	 % Replace one item in array2

array1 ==			 % Examine the arrays

array2 ==

The above code sends the following to stdout (the log file if you're using Acrobat Distiller):

[1 16 6]	 ← Array 1's contents
[1 16 6]	 ← Array 2's contents

Changing array2 also changed array1, because they are references to the same array in vm.

In most cases, the fact that dup results in two references to the same value has no effect on your program. But
it does occasionally happen that you need to make a deep copy (or clone, if you prefer) of the array, creating
a new array whose value is separate from, but identical to, the original (Figure 3). This is simple enough in
principle, but becomes a bit complicated if you need to make a deep copy of an array whose contents
include other arrays that themselves need to be deep copied.

This recursive deep copy is what we'll be discussing in this article.

[1 3 6]VM

[]

187

Figure 1. Simple objects,
such as integers, are self-
contained, whereas arrays
and other composite
objects contain a reference
to the place in vm where
their values reside.

[1 3 6]VM

[]

[]

Figure 2. The dup
operator produces two
objects that point to the
same place in memory.

[1 3 6]
[1 3 6]

VM

[]

[]

Figure 3. Deep copying
an object produces
two objects pointing to
different, but identical,
values in vm.

Acumen Journal: PostScript Tech		 3

Deep-Copying PostScript Objects

First Pass: The copy Operator
PostScript has an operator that will do what we want, up to a point. The copy operator takes two strings,
arrays, or dictionaries and copies the contents of the first item into the second, leaving the second object
(with its new contents) on the stack.

Thus, the simplest way of deep copying an array is simply:

% File: simple copy.ps

/array1 [1 3 6] def		 % <== this is the array we want to copy

array1 dup length array	 % make a new array the same length as the old

copy						 % copy the original array into the new one.

/array2 exch def

Again, we can confirm that array2 is an independent copy of array1 by changing the second array and
seeing if the change carries into array1:

array2 1 16 put	 % Replace item #1 in array2

array1 ==			 % Examine the arrays

array2 ==

This time, we see the following text written to stdout:

[1 3 6]
[1 16 6]

The change we made to array2 did not appear in array1; they are references to different objects.

The problem with this method is that it goes only one level deep. That is, if you have an array or dictionary
that contains another array or dictionary, copy will copy only the reference to that inner object (Figure 4).
Generally, if we are bothering to do a deep copy at all, we want to deep copy any descendant arrays or
dictionaries, as well.

For that, we need to do a little more work.

[1 3 []]
[1 3 []]

VM

[]

[]

[2 4]

Figure 4. The copy
operator makes only a
"shallow" copy of any
internal arrays, strings, or
dictionaries.

The Sample Code

As always, the sample
file for this article can be
downloaded from the
Acumen Training Resources
page; look for DeepCopy.zip.

http://www.acumentraining.com/Resources.html

Acumen Journal: PostScript Tech		 4

Deep-Copying PostScript Objects

Second Pass: A Recursive DeepCopy Procedure
We need to do a recursive deep copy that will examine each element in array1 and, if that element is an
array, do a recursive deep copy on it. For this, we’ll need to define a procedure that we can call recursively:

% File: CopyArray.ps

/DeepCopyArray		 % [array] => [array']

{
	 [exch			 % Push a mark on the stack & bring original array to top

	 {				 % forall: for each element in the array...

		 dup type /arraytype eq	% is it an array?
		 { DeepCopyArray } if		 % yes: do a deep copy; otherwise, leave it alone

	 } forall		 % After the loop, all the new array's contents are on the stack.

]				 % Finally, create the array

} bind def

/array1 [1 3 [2 4]] def	 % Let's try it out

/array2							 % Deep copy array1

	 array1 DeepCopyArray
	 def

array2 2 get 0 14 put		 % Change the contents of array2's inner array

array1 ==					 % & confirm that array1's inner array is unaffected

array2 ==

As expected, this writes the following to stdout:

[1 3 [2 4]]
[1 3 [14 4]]

The two arrays have separate sub-arrays; changing one has no effect on the other.

Acumen Journal: PostScript Tech		 5

Deep-Copying PostScript Objects

Deep Copying Dictionaries

Doing a deep copy of a dictionary is almost exactly the same process:

% File: CopyDict.ps

/DeepCopyDict		 % <<dict>> => <<dict'>>

{
	 <<	 exch			 % Push a mark on the stack & bring the dictionary to the top

	 {							 % forall: for each k-v pair

		 dup type /dicttype eq	 % is the value a dict?

	 { DeepCopyDict } if	 % yes: do a deep copy

	 } forall		 % The loop exits with the new dict's contents on the stack.

	 >>				 % Create the new dictionary

} bind def

/dict1	<<		 % Try it out

	 /a 1	 /b [1 2 3]
	 /c	 <<
		 /key1 4
		 /key2 5
		 /key3 6
	 >>
>> def

/dict2 dict1 DeepCopyDict def	 % Deep copy dict1

dict2 /c get /key1 26 put		 % Change the inner dict in dict 2

dict1 /c get /key1 get ==		 % Confirm dict1's inner dict is unchanged

dict2 /c get /key1 get ==

Acumen Journal: PostScript Tech		 6

Deep-Copying PostScript Objects

The stdout text from this program is

4
26

indicating that changing the internal dictionary in dict2 didn’t affect dict1’s internal dictionary.

However!

We still have a problem here. Note in the previous example that entry b in both dictionaries is an array;
DeepCopyDict as written will correctly deep copy dictionaries, but will copy only the reference for any
internal arrays.

We need a smarter procedure; one that will take any object and deep copy it as needed. We need a
universal procedure that we can call blindly with any object and have it do the right thing.

A Universal DeepCopy Procedure
And here it is. The code below defines a DeepCopy procedure that takes an object of any sort from the
stack and either does a recursive deep copy of it or does nothing at all, depending on the type of the object.

% File: DeepCopy.ps

/$CopyProcs		 <<		 % Procedures for each PostScript data type

	 /arraytype	 {
		 [exch { DeepCopy } forall]
	 } bind
	
	 /dicttype	 { << exch { DeepCopy } forall >> } bind

	 /stringtype	{ dup length string copy } bind
	
	 /default { }
>> def

Acumen Journal: PostScript Tech		 7

Deep-Copying PostScript Objects

/DeepCopy	 % obj => obj'

{
	 dup type		 			 % What kind of object do we have?

	 $CopyProcs exch
	 2 copy known				 % does the typename exist in $CopyProcs?

	 not { pop /default } if 	 % no: replace name with /default

	 get 						 % Get the corresponding proc from $CopyProcs...

	 exec						 % ...and execute it

} bind def

% Try it out with an array...

/Array1
[1 2 3 [(A) (B) (C)] 4 << /z 4 /Gee (Whiz) >>] def

Array1 DeepCopy
/Array2 exch def

Array2 3 get 0 (Mouse) put
Array1 ==
Array2 ==

% ... and with a dictionary

/Dict1
<<
	 /A 1
	 /B 2
	 /C <<
		 /D (Mouse)

Acumen Journal: PostScript Tech		 8

Deep-Copying PostScript Objects

		 /E 17
	 >>
	 /D [1 2 3]
>> def

/Dict2 Dict1 DeepCopy def
Dict2 /C get /D (Elephant) put
Dict2 /D get 1 100 put

Dict1 /C get /D get ==
Dict2 /C get /D get ==
() =
Dict2 /D get 2 -17 put

Dict1 /D get ==
Dict2 /D get ==

This DeepCopy procedure uses the PostScript type operator to determine the kind of object that is on the stack.

	 obj type → /typename

Type returns a predefined name on the stack, one of those listed in Table 1.

Let's step through the DeepCopy procedure in detail.

Table 1 Standard PostScript type names

arraytype		 gstatetype		 operatortype
booleantype	 integertype		 packedarraytype
dicttype		 marktype		 realtype
filetype		 nametype		 savetype
fonttype		 nulltype		 stringtype

Acumen Journal: PostScript Tech		 9

Deep-Copying PostScript Objects

Step by step

/$CopyProcs	 <<		 % Procedures for each PostScript data type

	/arraytype	 { [exch { DeepCopy } forall] } bind

	/dicttype	 { << exch { DeepCopy } forall >> } bind

	/stringtype { dup length string copy } bind

	/default { }

>>

We start by defining a dictionary, $CopyProcs, that holds a procedure for each data type we are going to
deep copy. Each key is one of the standard type names from Table 1; the value associated with that key is a
procedure that deep copies an object of that data type.

In our case, we have three of these procedures, associated with the names /arraytype, /dicttype, and
/stringtype. These procedures are identical to those from earlier in this article except that they recursively
call DeepCopy, rather than a type-specific procedure, like DeepCopyArray.

Our stringtype procedure simply calls copy, since string contents can only be characters, which don't
require deep copying.

Finally, we also define a procedure named default, which we'll use for objects other than arrays, dictionaries,
and strings. Note that this default procedure does nothing at all; it simply lets the object remain on the stack.

/DeepCopy		 % obj => obj'

{

We then define the DeepCopy procedure. This will take an object from the stack and return an object; the
return value is either the unchanged original object or a cloned string, array, or dictionary.

dup type		 % stack: obj /typename

The first thing DeepCopy does is duplicate its argument and then execute type, obtaining a type name for
the object.

Acumen Journal: PostScript Tech		 10

Deep-Copying PostScript Objects

$CopyProcs exch	 % stack: obj <<$CopyProcs>> /typename

We then push the $CopyProcs dictionary on the stack and then bring the typename back to the top.

2 copy	 % stack: obj <<$CopyProcs>> /typename <<$CopyProcs>> /typename

Here we are using copy in its stack-operator guise; it takes a number as its argument and makes a copy of the
top that-many items on the stack, not including its own argument (the 2, in this case). Thus, our call to copy
duplicates the top 2 items on the stack: $CopyProcs and the typename.

known		 % stack: obj <<$CopyProcs>> /typename bool

The known operator takes a dictionary and a key and returns a boolean, true if the key exists in the dictionary, false
otherwise. In our case, this boolean will indicate whether or not the typename exists as a key in $CopyProcs.

not { pop /default } if	% stack: obj <<$CopyProcs>> /name

If the boolean value returned by known is false, we'll discard the typename and replace it with the name /default.

get	 % stack: obj {proc}

We get the procedure corresponding to our typename (or default) from $CopyProcs…

exec

…and then execute that procedure.

} bind

And that ends the DeepCopy procedure.

Cool, eh?

Acumen Journal: PostScript Tech		 11

Deep-Copying PostScript Objects

I won't step through the rest of the sample program, since it merely confirms that DeepCopy works as
advertised.

So, When Would I Use This?

Admittedly, not very often. I routinely use DeepCopy when I'm doing a pseudo-object-oriented program
design (such as I described in the previous Journal). I inevitably use dictionaries to represent my objects and
creating a new object involves doing a deep copy of a generic template dictionary.

As is true with so many things in life, when you need it, you usually need it badly.

Acumen Journal: PostScript Tech		 12Acumen Journal: PostScript Tech		 12

Acrobat User

Signing Documents in Acrobat 11
Among the coolest things that have happened to Acrobat in the past few versions is the dramatic
improvement in the ease of signing pdf documents.

In the early days, the only electronic signature built into Acrobat was Adone's "self-signed" security. To sign a
document, you needed a fair amount of preparation; you needed to:

1	 Create a digital id in your copy of Acrobat.

2	 Create a digial certificate from this id.

3	 Email this certificate to everyone to whom you expect to send a signed document.

4	 Call those people and step them through the somewhat complicated process of importing the certificate
to create a "trusted identity" on their computer. (This is not an easy task for a novice.)

Now, at last, you're finally ready to sign the document.

Acrobat 11 has seriously simplified the process of signing a document. The old way, outlined above, is still
available, but there are a few additional signature types that are secure enough and are vastly simpler and
quicker to use, and, crucially, don’t require you to teach someone else how to carry out a complex task.

How secure is “secure enough?”

People get (understandably) paranoid about
the security of electronic signatures. How
can someone be sure that the signature on a
document page is really yours?

For practical purposes, the standard of
security to which electronic signatures
should be compared is that associated with
traditional ink-on-paper.

For centuries, a "signature" was a handwritten
rendering of your name, something easily
forged by other people. Not very secure,
you might think, but commerce based on
this method of identification is centuries old
and we muddled through somehow.

So the question is: Is the new method of signing
a document in Acrobat at least as verifiable as
the traditional, handwritten signature?

The answer is “yes,” as you’ll see in this article.

Acumen Journal: PostScript Tech		 13

Signing Documents in Acrobat XI

Acumen Journal: PostScript Tech		 13

The Sign Pane
The new signature mechanism is accessed through the new Acrobat Sign pane (Figure 1). This pane lets you
select among four different ways of signing your document:

Add Text	 Type arbitrary text (a date, your printed name, etc.) onto the page.

Add Checkmark	 Add a checkmark character to the page, letting you “fill in” a printed checkmark box.

Place Initials	 Place your initials on the page; you may either type your initials or draw them with a
graphics tablet.

Place Signature	 Place your signature on the page; this may be a scanned image of your handwritten
signature.

Let’s look at each of these in turn.

Add Text

This tool lets you place any text you like anywhere you like on the page; it’s identical, so far as I can tell, to the
Add Text tool in the Content Editing pane. It’s not intended for a signature, but rather for ancillary text, such
as a date or the “Print your name” line on a printed form.

When you select this tool, the cursor turns into a fancy version of the classic
insert-text I-beam and a text palette appears (Figure 2), allowing you to specify
font, point size, style, and other parameters. Again, this is identical in form and
function to the Add Text tool. Just click on the page and start typing.

Add Checkmark

Little to tell here and no surprises at all. The mouse pointer turns into a translucent checkmark; click on the
page and Acrobat will add a checkmark to the page. This checkmark is initially surrounded by a rectangle
with handles that let you rotate and resize it as needed to match the pre-printed text on the page, as at right.

Figure 1. All of the Signature
functions are accessed through

the aptly-named Sign pane.

Figure 2. When you select the Add Text tool,
you are presented with a floating pallet containing

common formatting tools.

Acumen Journal: PostScript Tech		 14

Signing Documents in Acrobat XI

Acumen Journal: PostScript Tech		 14

Place Initials

This option is a little more elaborate. When you click on this tool in the Sign
pane, Acrobat presents you with a dialog box (Figure 3) that lets you specify
how you want to place your signature. Your choices are two: type your
initials or draw them (Figure 4, far right).

Typing

Typing your initials is just what you’d expect: type one or more characters
into the text field; as you do so, the characters will appear in the graphics
field that makes up of the bottom half of the dialog box, displayed in one of
several script fonts, as in Figure 3. You can cycle through the available fonts
by clicking on the “Change initials style” button.

Finally, click on the Accept button and Acrobat lets you click on a location
on the page, applying the “handwritten” initials to the page. You are presented with handles that let you
reposition, resize, and rotate the graphic as needed to match the page’s background artwork (Figure 5).

Drawing

If you decide to draw your own initials (by selecting “Draw my initials” in Figure 4’s pop-up menu), you can
draw directly into the graphic panel in the dialog box using your track pad or mouse. Presumably you would
do this only if you have a graphics tablet or its equivalent, since trying to do this with a mouse (or even a
finger on your trackpad) yields pretty unappealing results (Figure 6).

As before, clicking Accept allows you to place your initials on the page.

Clear Saved Initials

Once you’ve created a set of initials, by either typing them or drawing them, Acrobat saves that artwork
internally so that you can use those same initials repeatedly on any pdf document that you open with that
particular copy of Acrobat.

To change the artwork, you need to select “Clear saved initials” in the drop-down menu that appears once

Figure 3. This dialog box lets you place
your initials on the page.

Figure 4. You can type your
initials or try to draw them.

Figure 5. Your initials start out
with handles that let you totate
and resize them.

Figure 6. The "Draw my initials"
feature yields unpleasant results unless
you have a graphics tablet.

Acumen Journal: PostScript Tech		 15

Signing Documents in Acrobat XI

Acumen Journal: PostScript Tech		 15

you have saved initials (Figure 7). The next time you try to place initials on the page, Acrobat will again
present you with the Place Initials dialog box (Figure 3).

Place Signature

Place Signature works almost exactly the initials function. When you click on the tool, Acrobat presents
you with the Place Signature dialog box, which looks like the twin of our earlier Initials box (Figure 8).

The Place Signature dialog box adds two methods of creating a signature (Figure 9) to the two available
for making initials.

Use an image	 This lets you scan your actual, handwritten signature and the result as your Acrobat
signature. (This is what I do.)

Use a certificate	 This let you apply a previously-created Adobe Self-Sign electronic signature to the
Acrobat page. I’m not going to discuss these here, though I do feel a future Journal article
coming on. Check out pretty much any how-to book on Adobe Acrobat (including my
own Quickstart Guide to Adobe Acrobat X) for details on how to set these up and why
you’d want to.

As with initials, Acrobat remembers your selection so that you can apply the same signature to future pdf
files with minimal effort.

Transparency

By the way, when you choose an image to serve as your signature artwork, Acrobat places that image on
the pdf page with a transparent background (Figure 10). This is greatly important, of course, since it allows
the signature to be placed on top of the page’s lines, labels, and other background artwork in a
completely natural-looking way.

Figure 7. A drop-down
menu becomes available

once you have created
your initials artwork

Figure 8. The Place Signature dialog box lets you
create the artwork for your signature on the pdf page.

Figure 9. You can
create signature
artwork four
different ways.

Figure 10. Signature and initials art-
work is placed on the pdf page with
the Background set to "transparent."

Acumen Journal: PostScript Tech		 16

Signing Documents in Acrobat XI

Acumen Journal: PostScript Tech		 16

Once You've Signed the Document
Having signed the document, the simplest thing to do is close the Sign pane, save the document, and
email it to the appropriate person.

You can also click on the Proceed to Send button in the Sign pane (Figure 11); this
will take you to Adobe's EchoSign service, which will forward the document to
your recipient. EchoSign is actually a pretty useful product; it's free for up to five
signed documents per month, which is adequate for many very small businesses
(including my own). You should look into it.

The Net Result
I use Adobe Acrobat for very nearly all the forms I receive, both printed and
electronic. Crucial to this is the ability to sign or initial a page in a form that the
people who sent the form will accept. The current incarnation of Acrobat has
made this as effortless as it’s ever been.

Figure 11. If you wish, you can send
your document to its receiver using
Adobe's EchoSign service.

Figure 12. Acrobat tries to detect when a document needs to
be signed and tells you about it. Clicking on the icon collapses
the banner, as at left.

Automatic Form Detection

When you open a pdf file,
Acrobat may present you with
a banner at the top of the
document page saying that it
has detected signature lines
(Figure 12) and offering to
open the Sign pane.

Clicking on the leftmost graphic
will collapse the banner into a
Navigation icon, as in the figure.

You can make this go
away permanently in the
Preferences by selecting
Preferences>Forms>Always hide
forms document message bar.

You're welcome.

Acumen Journal: PostScript Tech		 17

Schedule of Classes

Schedule of Classes, September – November 2013

At right are the dates of Acumen Training’s upcoming classes
in Orange County, California. Click on a class name to see the
description of that class on the Acumen Training website.

O.C. and On-Site

These classes are taught in Orange County, California and on-site at
corporate sites world-wide.

Please see the Acumen Training web site for more information,
including an up-to-date schedule.

Class Fee

Class fees are as follows:

■■ PostScript Foundations $2,000
■■ PDF 1: $2,000
■■ Troubleshooting PostScript $1,500
■■ Support Engineers’ PDF $1,000

There is a 10% discount for signing up three or more students.

Note that if you have four or more students that need to take a class,
it will almost certainly be cheaper to arrange an on-site class.

PDF Classes
PDF 1: File Content

and Structure Sept 16-19 Oct 21-24

PDF 2: Advanced File
Content Nov 11–14

Support Engineers’ PDF Oct 17-18

PostScript Classes

PostScript Foundations Sept 9-13 Nov 4–7

Advanced PostScript

Variable Data PostScript

Troubleshooting
PostScript Oct 14-16

http://www.acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/Descr_SEPDF.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html

Acumen Journal: PostScript Tech		 18

Contacting John Deubert at Acumen Training
For more information

For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: www.acumentraining.com	email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes

To register for an Acumen Training class, contact John any of the following ways:

Register On-line: www.acumentraining.com/register.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

On-Site Classes

Information regarding classes on corporate sites is available at www.acumentraining.com/Onsite.html. These
courses are taught throughout the world; for additional information on classes outside the United States, go
to
www.acumentraining.com/OnsitesWorldWide.html.

Back issues

All issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Contacting John

http://www.acumentraining.com
mailto:john%40acumentraining.com?subject=
http://www.acumentraining.com/Register.html
mailto:registration%40acumentraining.com?subject=
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/OnsitesWorldWide.html
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 19

What’s New?

What’s New at Acumen Training?
New First Steps Guides in the Works: PostScript and PDF

The next two volumes in the First Steps series of booklets are in the works, covering PostScript programming
and the pdf file format. Expect to see them toward the end of the year!

They'll each be a steal at $1.99!

PostScript
First Steps in...

John Deubert
Programming

Quality Electronic Documentation
from Acumen Training

GuidesDEQ ™

A beginner’s
short introduction to
programming in the
PostScript language

®

	Go Next Page 7:
	Page 1: Off

	Go Next Page Bottom 13:
	Page 2: Off
	Page 121: Off

	Go Next Page:
	Page 2: Off

	Go Home:
	Page 2: Off

	Go Prev Page:
	Page 2: Off

	Go Prev Page 7:
	Go Next Page Bottom 11:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off
	Page 139: Off
	Page 1410: Off
	Page 1511: Off
	Page 1612: Off

	Go Next Page 1:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off

	Go Home 1:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off

	Go Prev Page 1:
	Page 3: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 85: Off
	Page 96: Off
	Page 107: Off
	Page 118: Off

	Go Next Page 2:
	Page 12: Off

	Go Home 2:
	Page 12: Off

	Go Prev Page 2:
	Page 12: Off

	Go Next Page 10:
	Page 13: Off
	Page 141: Off
	Page 152: Off
	Page 163: Off

	Go Home 7:
	Page 13: Off
	Page 141: Off
	Page 152: Off
	Page 163: Off

	Go Prev Page 10:
	Page 13: Off
	Page 141: Off
	Page 152: Off
	Page 163: Off

	Go Next Page 6:
	Page 17: Off
	Page 181: Off
	Page 192: Off

	Go Home 6:
	Page 17: Off
	Page 181: Off
	Page 192: Off

	Go Prev Page 6:
	Page 17: Off
	Page 181: Off
	Page 192: Off

	Go Next Page Bottom 14:
	Page 17: Off

	Go Next Page 12:
	Go Home 10:
	Go Prev Page 12:
	Go Next Page 11:
	Go Home 8:
	Go Prev Page 11:
	Go Next Page Bottom 15:
	Go Home 9:
	Go Prev Page 9:

