
Acumen Journal, Issue 48 © 2012 John Deubert, Acumen Training	� Acumen Journal, Issue 67 © 2013 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, June 2013

Table of Contents

The Acrobat User
The JavaScript Math Object
The JavaScript language implements many of the standard math functions, such as square root, as functions in
a predefined Math object class.

PostScript Tech
An Object-Oriented Text Block in PostScript
Although PostScript isn't an object-oriented language, it can be useful to apply object-oriented concepts to
your programs, particularly in variable data PostScript applications. This article looks at the implementation of
a PostScript TextBlock object.

Class Schedule
Jul-Aug-Sept-Oct

What’s New?
First Steps in JavaScript for Adobe Acrobat is out; also, a new Orange County classroom site
The first in a series of cheap, short books on technical subjects, available on Amazon.com.
Also, Acumen Training has a new classroom site in San Juan Capistrano, California.

 Contact John at Acumen Training
If you want to ask a question, sign up for a class, arrange an on-site, or arrange some contract
programming, here's where to do it: telephone number, email address, postal address.

1.0

Creative Expertise in PostScript, Acrobat, and PDF

T
Acumen

raining
& Services

JavaScript
First Steps in...

John Deubert
Adobe Acrobat

for

Quality Electronic Documentation
from Acumen Training

GuidesDEQ ™

A beginner’s
short introduction to
writing JavaScript for
Adobe Acrobat

®

http://www.acumentraining.com/QEDGuides

Acumen Journal: PostScript Tech		 2

PostScript Tech

An Object-Oriented Text Block in PostScript
The Variable Data PostScript class is one of my favorite classes to teach (though
I don't teach it often; it's a small market) because I really get a chance to make
PostScript show its stuff as a programming language. One characteristic of the
class is that the project we work on, one of whose output pages is at right, entails
printing on each page several blocks of text that vary in their purpose. Some
of the blocks are uniform in font and point size, some are styled, some have
embedded tags that need to be replaced with variable data.

This is a situation that invites an object oriented approach; in other languages
we'd define an object class that represents a block of text and then create various
subclasses to accommodate the different types of text we need to print.

PostScript isn't an object-oriented language, but it is a programming language, so
we can do pretty much anything we want, include implement an object-oriented
structure for our text blocks.

Let's see how to do this.

A TextBlock Object
This article's code implements a TextBlock dictionary that is a roughly self-
contained representation of a piece of text that needs to be printed at some
arbitrary place on the page. In Figure 1, the boxed text and the "Congratulations"
paragraph are both represented by TextBlock dictionaries.

A TextBlock object contains everything needed to print that particular piece of text: the text itself, of course,
but also the font and point size, the line height, and, significantly, the PostScript procedure that actually draws
the text. To draw a TextBlock, you push its dictionary on the dict stack and execute the Show procedure,
stored in the TextBlock dictionary itself.

Happy Fish
Marine Delivery and service

March 23, 2003

John Deubert
25142 Danalaurel
Dana Point, CA 92629

Acct. #500-000-0

Thanks from
your agent,

Cody Stefens

Previous Balance: $2700.00
New Activity: $23.46
Total due: $2723.46

Your account is past due. Please make out a check in the amount of
$40,000.00 and send it to us right now!

Congratulations, John Deubert! How are things in Dana Point?
You have now acquired enough Fishé Points to qualify for any

one of a number of extremely valuable gifts! Contact us today at
1-800-555-1212 to collect your free gift. (Shipping and handling and service

charges all apply.)

Figure 1. The output pages in the Variable
Data PostScript class have a collection of blocks

of text, each with difference characteristics.

http://www.acumentraining.com/Descr_VDPS.html

Acumen Journal: PostScript Tech		 3

An Object-Oriented Text Block

Show draws the text in whatever manner is appropriate for that text block. The basic TextBlock, like Figure 1's
boxed text, just draws itself within a specified field width, breaking lines as needed. Figure 1's "Congratulations"
text, on the other hand, is a much-less-basic TextBlock; its Show procedure supports styled text and replaces
pre-defined tags with variable data.

Both TextBlocks were printed the same way: the TextBlock dictionary was pushed on the dictionary stack
and the block's Show procedure was executed. In the Variable Data class we did this with a utility procedure
named ShowTextBlock:

/ShowTextBlock		 % << TextBlock >> x y → ---
{
	 3 -1 roll begin
	 Show
	 end
} bind def

Note that the blocks' Show procedures expect to find an x,y pair on the operand stack.

Dependencies

Speaking of utility routines, the TextBlock implementation I present here makes use of two procedures,
PrintWord and PrintParagraph, that together take a string and print it within a specified field width.

These are defined in a dictionary named TextBlockCommon, as follows:

/TextBlockCommon		 <<
	 /newline % --- => ---
	 { 0 currentpoint exch pop lineHeight sub moveto } bind

The Sample Code

As always, the sample
file for this article can be
downloaded from the
Acumen Training Resources
page; look for TextBlock.pdf.

http://www.acumentraining.com/Resources.html

Acumen Journal: PostScript Tech		 4

An Object-Oriented Text Block

	 /PrintWord % (word) => ---
	 {
		 dup stringwidth pop
		 currentpoint pop
		 add maxWidth gt
		 { newline } if
		 show () show
	 } bind

	 /PrintParagraph % (paragraph) => ---
	 {
		 ()
		 {
			 search exch PrintWord
			 not { exit } if
		 } loop
		 newline
	 } bind

>> def

These procedures are described in full detail in the January 2006 (issue 41) of the Acumen Journal; you should
probably go read that article now, since this article talks no further about how they work.

The TextBlock Object

The TextBlock implementation is built from a generic TextBlock dictionary that forms the basis for all the
specific TextBlocks we need. The Generic TextBlock supplies default values for the text parameters; these are
placeholders, really, since they will nearly always need to be overridden for a specific TextBlock instance.

http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 5

An Object-Oriented Text Block

Here's my definition of the generic TextBlock:

/TextBlockGeneric	 <<
	 /font /Helvetica findfont
	 /textSize 16
	 /lineHeight 19
	 /maxWidth 300
	 /text ()
	
	 /Show		 % x y => ---
	 {
		 TextBlockCommon begin
		 gsave
		 translate
		 font textSize scalefont
		 setfont
		 0 0 moveto
		 text PrintParagraph
		 grestore
		 end
	 } bind
>> def

This is pretty lucid, I think. We supply:

■■ The font, point size, and leading we want for the printed text;

■■ The distance (maxWidth) between the left and right margins (for simplicity, the text block moves the origin
to the starting x,y coordinate, so the left margin is always 0).

■■ The text (defaulting here to an empty string).

Finally, the dictionary contains a Show procedure that prints the text at a specified x,y location on the page.

Acumen Journal: PostScript Tech		 6

An Object-Oriented Text Block

Note that this procedure calls the PrintParagraph procedure defined in “TextBlockCommon”. Note also that
Show presumes the TextBlock dictionary has already been pushed onto the dictionary stack.

Creating a TextBlock Instance

To create a TextBlock that represents a specific piece of text on our page, we need to do the following:

■■ Make a copy of the generic TextBlock dictionary.

■■ Redefine, in the new dictionary, any entries that need to be overridden; this will often be all or most of the
generic entries.

Here's a procedure that does this:

/CreateTextBlock		 % <<Generic>> <<overrides>> → << New Block >>

{	 exch dup length dict copy	 % Make a copy of the generic dictionary...
	 begin						 % ...and push it onto the dict stack
	 { def } forall				 % Copy dict override contents
	 currentdict					 % Push current dict onto operand stack
	 end							 % and clean up the dict stack.

} bind def

This procedure takes two dictionaries: a generic TextBlock (or any other dictionary, for that matter) and a
dictionary of overrides, key-value pairs that should be added to the newly-made TextBlock dictionary.

A typical call to this procedure would look like this:

/TextBlock1
	 TextBlockGeneric
	 << /font /Times-Roman findfont
		 /TextSize 20
		 /text (We’re all adults here and can be trusted not to keep a secret.)
	 >> CreateTextBlock
def

Acumen Journal: PostScript Tech		 7

An Object-Oriented Text Block

You could then print the Block’s text with a call to ShowTextBlock:

TextBlock1 100 600 ShowTextBlock

Subclassing, Sort of…
So what if we want to create another type of TextBlock, perhaps one that prints colored text? We’d like this
new “class” to have all the contents of the previous class, plus an array containing an rgb value; it will also
need a new version of Show that will set the color before printing the text.

We need to create a new species of generic TextBlock that contains all the old TextBlock contents and then
adds the color value and a new version of Show. In addition, if we can preserve the old Show procedure,
perhaps renaming it, our new Show could call the old one, letting us reuse the earlier code.

Here’s a MakeSubclass procedure that does all this; it’s generic, itself, and could be used with any
dictionary that has a Show procedure in it:

	 /MakeSubclass	 % << Base >> << overrides >> => <<subclass>>
	 {
		 exch dup length dict copy	 % Create a copy of the base class...
		 begin 						 % ...and put it on the dict stack
		 /Show0 /Show load def		 % Preserve the old Show proc
		 { def } forall				 % Copy the override contents
		 currentdict					 % Push the new Generic dict on the op stack
		 end							 % and remove it from the dict stack
	 } bind

Acumen Journal: PostScript Tech		 8

An Object-Oriented Text Block

So, to make the generic ColorTextBlock, you’d do this:

/TextBlockColorGeneric
	 TextBlockGeneric			 % The base class
	 <<							 % The additional key-value pairs
		 /rgb [.3 .7 .5]
		 /Show					 % x y => ---
		 {
			 gsave
			 rgb aload pop setrgbcolor	 % Set the color…
			 Show0						 % …and call the old Show
		 } bind
	 >>
	 MakeSubclass			 % Leaves the new generic ColorTextBlock dict on the stack
def

Now we can create and use a colored text block as follows:

/RedText
	 TextBlockColorGeneric
	 <<	 /Font /Times-Italic findfont
		 /text (Aristotle was famous for knowing everything. He taught that the
brain exists merely to cool the blood and is not involved in the process of
thinking. This is true only of certain persons.)
		 /rgb [1 .3 .5]
	 >> CreateTextBlock
def

RedText 100 450 ShowTextBlock

Acumen Journal: PostScript Tech		 9

An Object-Oriented Text Block

Although basic and red TextBlock objects are called with identical invocations of ShowTextBlock, each
prints text according to its nature (Figure 2).

Limitation to this Implementation

The code in this article supports only one level of subclassing, since all I do to preserve the base class's
Show is rename it to a fixed name. A more generic approach would be to have each TextBlock maintain an
array of text-showing procedures and have the Show procedure execute all the procedures in this array:

/ShowPipeline [{show0}{show1}{show2}…]
/Show	 {
	 …
	 ShowPipeline { exec } forall
	 …
} bind

The MakeSubclass procedure would simply add the Show procedure in the overrides dictionary to the head
of the array. We didn’t bother with this in the VDPS class; it never became necessary.

I will leave this as an Exercise for the Student.

So, What’s It Good For?
Consider this food for thought, if nothing else. This object-oriented approach entails a bit of effort, but it
helps organize your work when your task has a large number of variations on a theme.

Also, it was fun to develop.

Aristotle was famous for knowing
everything. He taught that the brain exists
merely to cool the blood and is not
involved in the process of thinking. This is
true only of certain persons.

Aristotle was famous for knowing
everything. He taught that the brain exists
merely to cool the blood and is not
involved in the process of thinking. This is
true only of certain persons.

Figure 2. The output pages in the Variable Data
PostScript class have a collection of blocks of text, each

with difference characteristics.

Acumen Journal: PostScript Tech		 10Acumen Journal: PostScript Tech		 10

Acrobat User

The JavaScript Math Object
Someone complained to me recently that, as far as he could tell, JavaScript is missing some very basic
mathematical functions, including all of the trigonometric functions.

How could that possibly be?

Well, not surprisingly, it isn't so; JavaScript has all the math functions you could want. However, they are
unexpectedly hidden from immediate view. In fact, all of the math functions except the very most basic
reside as class methods in the JavaScript Math class. This class is not the least bit hard to use, but the fact of its
existence isn't obvious when you first get started with JavaScript.

The Math Object
The Math object contains a fair collection of class methods that implement math
functions, listed in Table 1. Examining the table, you'll see that these methods are all pretty
straightforward both in concept and in use. Since these are class methods, you don't need
to create an actual Math object to use them; you can simply invoke them using the class
name, as follows:

var root6 = Math.sqrt(6)

The above line will set the variable root6 to the value 2.45 (or thereabouts).

Table 1 Math Object Properties & Methods

Properties
E					 LOG10E			 SQRT1_2
LN10				 LOG2E			 SQRT2
LN2					 PI

Methods
abs					 cos				 pow
acos					 exp				 random
asin					 floor			 round
atan					 log				 sin
atan2				 max				 sqrt
ceil					 min				 tan

What you should know...

This article assumes you have
some knowledge of Acrobat
JavaScript, equivalent to having
read my e-book, Beginning
JavaScript for Adobe Acrobat.

Information about the book is
available here.

Acumen Journal: PostScript Tech		 11

The JavaScript Math Object

Acumen Journal: PostScript Tech		 11

An Example

To see the Math object in action, consider the form fields at right. These collect the x and y
coordinates of two points and calculates and displays the distance between them. (The fields are
active, by the way; try them out.)

Remembering the distance formula (yes you do!), the distance between two points is

			 ———————
		 d =	 √(x₂-x₁)2 + (y₂-y₁)2)

This is the value we want to put into our Distance field.

The form field names are named Pt1_x, Pt1_y, Pt2_x, Pt2_y, and Distance.

Each of the four x or y form fields has an "On Blur" script attached to it that simply calls a function named
CalculateDistance, defined in a document JavaScript. So, the On Blur scripts are, in total:

CalculateDistance

The CalculateDistance function is defined in a document script, as follows:

function CalculateDistance()
{
	 var x1, y1, x2, y2
	 var dist
	
	 x1 = this.getField("Pt1_x").value
	 y1 = this.getField("Pt1_y").value
	 x2 = this.getField("Pt2_x").value
	 y2 = this.getField("Pt2_y").value

	 dist = Math.sqrt(Math.pow(x2 - x1,2) + Math.pow(y2 - y1,2))
	 dist = Math.round(100 * dist) / 100

Figure 1.This JavaScript uses methods from the Math object.

Acumen Journal: PostScript Tech		 12

The JavaScript Math Object

Acumen Journal: PostScript Tech		 12

	
	 this.getField("Distance").value = dist
}

This script uses three of the Math object methods:

Math.sqrt(n)	 Returns the square root of n.

Math.pow(m,n)	 Returns mn.

In our code, pow is used in the visually-confusing

				 Math.pow(x2 - x1, 2)

which returns (x₂ - x₁)2

Math.round(n)	 Returns n rounded to the nearest integer.

The Math object is, as I say, pretty easy to use. A full description of all of its methods can be found in the
ClientSide JavaScript Reference.

http://docs.oracle.com/cd/E19957-01/816-6408-10/

Acumen Journal: PostScript Tech		 13

Schedule of Classes

Schedule of Classes, July – October 2013

At right are the dates of Acumen Training’s upcoming classes
in Orange County, California. Click on a class name to see the
description of that class on the Acumen Training website.

O.C. and On-Site

These classes are taught in Orange County, California and on-site at
corporate sites world-wide.

Please see the Acumen Training web site for more information,
including an up-to-date schedule.

Class Fee

Class fees are as follows:

■■ PostScript Foundations $2,000
■■ PDF 1: $2,000
■■ Troubleshooting PostScript $1,500
■■ Support Engineers’ PDF $1,000

There is a 10% discount for signing up three or more students.

Note that if you have four or more students that need to take a class,
it will almost certainly be cheaper to arrange an on-site class.

PDF Classes
PDF 1: File Content

and Structure Aug 5–8 Sept 23–24

PDF 2: Advanced File
Content

Support Engineers’ PDF Aug 15–16 Oct 17-18

PostScript Classes

PostScript Foundations July 15-19 Sept 9-13

Advanced PostScript

Variable Data PostScript July 29–Aug 2

Troubleshooting
PostScript Aug 12–14 Oct 14-16

http://www.acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf1.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/descr_pdf2.html
http://www.acumentraining.com/Descr_SEPDF.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html

Acumen Journal: PostScript Tech		 14

Contacting John Deubert at Acumen Training
For more information

For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: www.acumentraining.com	email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes

To register for an Acumen Training class, contact John any of the following ways:

Register On-line: www.acumentraining.com/register.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

On-Site Classes

Information regarding classes on corporate sites is available at www.acumentraining.com/Onsite.html. These
courses are taught throughout the world; for additional information on classes outside the United States, go
to
www.acumentraining.com/OnsitesWorldWide.html.

Back issues

All issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Contacting John

http://www.acumentraining.com
mailto:john%40acumentraining.com?subject=
http://www.acumentraining.com/Register.html
mailto:registration%40acumentraining.com?subject=
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/OnsitesWorldWide.html
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 15

What’s New?

What’s New at Acumen Training?
First Steps in JavaScript for Adobe Acrobat is out

The first volume of the First Steps Guides, a series of cheap, short, but very useful e-books, is out and available
on Amazon.com. This initial offering provides a solid start to your study of JavaScript for Adobe Acrobat.

It's an excellent deal at $1.99!

Acumen Training has a new classroom site

Acumen Training has a new location for its classes in Orange County:

		 Acumen Training	
		 31726 Rancho Viejo Road, Suite 219
		 San Juan Capistrano, CA 92675

Our classes are now conducted in the attractive Ortega Business
Center, a three block walk from the famous Mission San Juan Capistrano.
It's surrounded by many places to eat and a five minute drive from the
California coast, including Dana Point Harbor and some of the best
Southern California surfing beaches.

JavaScript
First Steps in...

John Deubert
Adobe Acrobat

for

Quality Electronic Documentation
from Acumen Training

GuidesDEQ ™

A beginner’s
short introduction to
writing JavaScript for
Adobe Acrobat

®

http://www.amazon.com/First-Steps-JavaScript-Acrobat-ebook/dp/B00AT21YIQ/ref=sr_1_1?ie=UTF8&qid=1371750320&sr=8-1&keywords=acrobat+javascript

	Go Home:
	Page 2: Off

	Go Prev Page:
	Page 2: Off

	Go Next Page:
	Page 2: Off

	Go Next Page Bottom 13:
	Page 2: Off

	Go Prev Page 7:

