
Table of Contents

The Acrobat User Creating a “Print-Only” Document
Here’s a tricky task: I needed to send a former student a pdf document that they could print, but not keep
in electronic form (that is, as the original pdf file). This issue examines an implementation of a “read-once-
print-once” pdf file. It uses JavaScript to do its magic.

PostScript Tech The imagemask Operator
This important variant of the image operator is important to the implementation of such things as bitmap
fonts and other cases where the background must show through the “white” parts of an image.

Class Schedule September, October, November

What’s New? Support Engineers’ PDF available. Announcing XPS File Content and Structure
The PDF Troubleshooting class is available; also, a new course is coming next year.

Contacting Acumen Telephone number, email address, postal address

Acumen Journal, Issue 50 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, September 2007

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 2

PostScript Tech

The imagemask Operator
You do, of course, remember the image operator from your PostScript class. This is the
PostScript operator that prints raster images, like the image at right. As you recall, images
in PostScript are opaque, like everything else in PostScript. Thus, white areas in an image
are opaque white and hide whatever they print atop; in the illustration at right, the white
areas of the image obscure the green background rectangle.

PostScript has an alternative operator for printing images that I don’t discuss in any of my
classes: the imagemask operator. What is significant about this operator is that white areas
are transparent; the background shows through the white spots, again as at right. This
makes it perfect for such things as characters in a bitmapped font.

Compared to image The imagemask operator is virtually identical to the regular image operator; it differs in
two significant ways:

•	 It is limited to 1-bit data; each image sample will have a value of either 0 or 1.

•	 The samples are interpreted as either painted or unpainted (rather than black or white). Painted samples
will be painted with the current color; unpainted samples will allow the background to show through.

Ignoring Level 1 In this article, we are going to be discussing imagemark only as it exists in PostScript levels 2 and 3; we
shall not discuss the Level 1 incarnation, which is left to the readers’ own research.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 3

PostScript Tech

Acumen Journal: PostScript Tech		 3

The imagemask Operator

Using imagemask The imagemask operator, like image, takes a single dictionary as its argument:

	 << imagedict >> imagemask

The key-value pairs that have meanings wthin this dictionary are virtually identical to those within the
image operator’s dictionary argument; briefly described, the key-value pairs are:

/ImageType	 1
This code indicates what kind of image dictionary this is. For imagemask, the value must
always be 1.

/Width	 int
The width of the image in samples, that is, the number of samples on a scanline.

/Height	 int
The height of the image data in samples, that is, the number of scanlines in the image.

	 Note that Width and Height describe the dimensions of the image data and are completely
unrelated to the size on the page of the printed image.

/BitsPerComponent	 1
The BitsPerComponent entry must have a value of 1.

/Decode	 []
Decode is an array of two numbers that determines the meanings of data values 0 and 1,
that is, which value indicates “paint” and which “don’t paint.” There are only two possibilities:

	 [0 1] specifies that painted samples have a value of 0.

	 [1 0] specifies that painted samples have a value of 1.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 4

PostScript Tech

Acumen Journal: PostScript Tech		 4

The imagemask Operator

/ImageMatrix	 [w 0 0 -h 0 h]
This is a PostScript transformation matrix that establishes the position and size of the final
printed image. As you likely recall, this array of six numbers will virtually always be

				 [w 0 0 -h 0 h]

	 where w and h are the width and height of the image data, identical to the Width and
Height dictionary entries. This array maps the image into a 1-unit square at the origin,
which is not by itself terribly useful. The trick is to precede the call to imagemask with a
translate and scale that specify the actual location and size of the printed image.

	 I’m certain you remember this from PostScript class.

/DataSource	 fileobj | (string) | {proc}
Finally, the DataSource entry supplies the image data. This is nearly always either a file
object or a string, whose contents are interpreted as 1-bit image data. It is less frequently
a data acquisition procedure that will be repeatedly called by imagemask. Each time it is
called, the procedure must return a string containing image data.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 5

PostScript Tech

Acumen Journal: PostScript Tech		 5

The imagemask Operator

An Example Here’s an example of the imagemask operator at play.

[90 490 120 120] dup		 // Draw the background rectangle...
.5 1 .8 setrgbcolor rectfill	 // ... Filled with light green
0 .5 0 setrgbcolor rectstroke	 // ... and stroked with dark green

0 setgray					 // Set the current color to black

100 500 translate				 // The image will be printed at 100,500
100 100 scale					 // It will be printed 100 units on a side

<< /ImageType 1
 /Width 50				 // Samples per scanline
 /Height 50				 // Scanlines in the image
 /BitsPerComponent 1		 // 1-bit data (no other choice here)
 /Decode [0 1]			 // 0 samples will paint; 1 will not paint
 /ImageMatrix [50 0 0 -50 0 50]	 // [w 0 0 -h 0 h]
 /DataSource currentfile /ASCII85Decode filter	 // Read data from currentfile…
 /LZWDecode filter			 // ... through two filters
>> imagemask						 // Invoke imagemask, followed by the image data
J3Vsg3$]7K#&$;kY]q,L”Nu?=!&.@P!X-u’3$Q^>KPe$sNko5’p\XY>!0T5cnjja6
IfG)9fY@f@%VIG45`ib]r”1#5J’MEZq?.:a&”p^jkR’]arC`qETChaU*X;NaYU[tS
rF(3YJ%jh/Jbt&8!djtJ(‘\W9eIuLYj.H[IZK6+`[@cjpPZd*p^;&ATp’&$0_8B6W
(7AV9]/6KsT9De[:FA$(5GsLMp1AjQcVbhs2u!HV0%,8UHAeT!)$H>mi(YU*~>

showpage

Next Page ->

Example on Website

As usual, the sample program
is available on the Acumen
Training Resources page.
Look for imagemask.ps.

http://www.acumentraining.com/Resources.html

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 6

PostScript Tech

Acumen Journal: PostScript Tech		 6

The imagemask Operator

Step by Step This isn’t particularly tricky code and I’m not going to step through it in detail. A couple
parts of the program are noteworthy:

[90 490 120 120] dup
.5 1 .8 setrgbcolor rectfill
0 .5 0 setrgbcolor rectstroke

You may not have stumbled across this technique for both filling and stroking a rectangle. Remember that
the rectfill and rectstroke operators both can take an array of numbers as their arguments, interpreting the
array contents as x, y, w, and h for one or more rectangles.

Here we create an array with the location and dimensions of the rectangle I want to paint. I dup the array,
then hand it successively to rectfill and then rectstroke. preceding each rectangle operator with a call to
setrgbcolor that specifies the color of that action.

Note that the alternative, more typical, way of doing this is a bit more elaborate:

90 490 moveto 120 0 rlineto 0 120 rlineto -120 0 rlineto closepath
gsave .5 1 .8 setrgbcolor fill grestore
0 .5 0 setrgbcolor stroke

What informal testing I have done indicates that the rectfill/rectstroke version is consistently faster than
the gsave/grestore method.

0 setgray

Before using imagemask, I set the current color to whatever I want for the image’s painted pixels, black,
in this case. Note that imagemask always paints pixels with the current color; had I not reset the color to
black, the A would have come out in the same dark green that I used to stroke the rectangle, as at right.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 7

PostScript Tech

Acumen Journal: PostScript Tech		 7

The imagemask Operator

100 500 translate
100 100 scale

Remember that the location and size of the image on the page is determined by the calls to translate and
scale. In this case, the lower-left corner of the image will be at 100,500 and the image will be 100 PostScript
units on a side.

<<
 /ImageType 1
	 ...
	 ...
 /DataSource currentfile /ASCII85Decode filter
 /LZWDecode filter
>> imagemask
J3Vsg3$]7K#&$;kY]q,L”Nu?=!&.@

Finally, we make our call to imagemask. The key-value pairs in the dictionary argument are as I described
earlier and are relatively unremarkable. Note that the DataSource is currentfile, to which we have attached
the ASCII85Decode and LZWDecode filters. This means that the image data, supplied in-line immediately
following the invocation of imagemask, must have been lzw compressed and then converted to ascii.

showpage

Finally, we follow our image data with a call to showpage. We can get away with this—that is, imagemask
doesn’t interpret this PostScript line as image data—because the in-line data ends with “~>”, which is the
end-of-data marker for the ASCII85 filter. The imagemask operator will see this two-character sequence as
logical end-of-file and return control to the PostScript interpreter.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 8

PostScript Tech

Acumen Journal: PostScript Tech		 8

The imagemask Operator

Messing With Decode The interpretation of the bits in the data is determined by the Decode array. The first entry
in the array indicates the 1-bit value that should be painted; the second entry is the value
that should be left unpainted. Thus, reversing the Decode array entries in our example
(making it [1 0]) reverses the interpretation of the bits in the image, as at right.

If you use the same value for both entries in Decode—that is, both 0 or both 1—you get
indeterminate behavior. Distiller treats the situation as though you have used [0 1]; zero
pixels are painted and non-zero pixels are unpainted. Ghostscript simply doesn’t paint the image, which
is reasonable, if a bit boring.

Return to Main Menu

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User	 9

Acrobat User

Creating a “Print-Only” PDF Document
Someone (not an ex-student) once asked if I could send him a chapter from my pdf 1 student notes.
This always poses a bit of a problem for me. The situation was such that the request was completely
reasonable; he had asked me a question regarding something that I discuss in the pdf class and the
easiest way to get the information to him would be to send him a copy of the appropriate part of my
student notes.

Still, I’m never happy to send electronic copies of my notes; those are, after all, part of what I sell for a
living: engineering classes and their associated student materials.

Ignoring questions of whether or not my concern is valid, the situation led me to the question: how could
I send the person a pdf file that can be printed once as a personal reference, but then becomes unusable.

This month, we shall look at my solution to the problem. As with many JavaScript-based security solutions
in Acrobat, it’s not foolproof; its main effect is to make a crystal clear statement that you don’t the file to
be used once it has been printed.

Required Reading I am going to assume that you have recently read The Acrobat Global Object in the
August 2004 Acumen Journal. This describes the Acrobat JavaScript global object,
upon which our print-only documents depend.

I also assume you have either read my book Extending Acrobat Forms With JavaScript
or have equivalent experience. In particular, you will need to know how to attach a
document JavaScript to a pdf file within Acrobat; happily, this is reviewed in the same
August 2004 Journal article.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 10

“Print-Only” PDF Files

Overview A print-only pdf file allows itself to be opened only
a small number of times before becoming useless.
The intent is that the user will print the file during its
“openable” period.

 Each time it is opened, the document displays a
warning, telling the user how many more times the
document may be opened.

The print-only pdf file is built around a Document
JavaScript, that is, a JavaScript that executes every
time the file is opened. Our JavaScript does the following:

•	 Check for the existence of a global variable that tracks the number of times the file has been opened.

•	 If the variable doesn’t exist, create it and initialize it to the maximon number of times the document
may be opened.

•	 If it does exist, decrement it.

•	 Display an alert appropriate to the number of times the document may yet be opened.

	 If the document has expired, say so. Otherwise, display the number of times the document is still
openable, as above right.

•	 If the document has expired, render it unusable by doing the following:

•	 Place a full-page, white, FreeText annotation on every page, hiding the pages’ contents from view.

•	 “Flatten” the document, converting all of the full-page annotations to regular pdf white-filled
rectangles.

This isn’t proof against a determined, sophisticated user, but it will slow ‘em down a bit.
																 Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 11

“Print-Only” PDF Files

The JavaScript Here is the (edited) JavaScript that does the deed. This is necessarily edited for brevity; the full JavaScript
is on the Acumen Training Resources page, as usual (see sidebar, left).

// First, we check our global variable, jrd_Counter001
if (global.jrd_Counter001 == null)	 {	 // If it doesn’t exist...
	 global.jrd_Counter001 = 3			 // ...create it.
	 global.setPersistent(“jrd_Counter001”, true)
}
else									 // Otherwise...
	 global.jrd_Counter001--			 // ...decrement it

// localCount is a local variable whose value is the same as our global counter.
var localCount = global.jrd_Counter001	 // This seemed convenient for presentation

if (localCount > 0)	 {	 // Haven’t exceeded the max? Present an alert & continue...
	 var s = “Please note that this is a \”Print-only\” document.\n\n”
	 ...
	 ... // Here we assemble the string s with a message appropriate to the number of
	 ... // times the doc is still openable; see the full file for the details.
 	 ...
	 // Now display the alert.
	 app.alert({ cTitle: “Print-Only Document”,
				 cMsg: s,
				 nIcon: 1
			 })
}

Next Page ->

File on Website

This article’s JavaScript is
available on the Acumen
Training Resources page.
Look for the file printonly.js.

http://www.acumentraining.com/Resources.html
http://www.acumentraining.com/Resources.html

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 12

“Print-Only” PDF Files

else	{	 // If the counter has wound down to zero, kill the document.
	 // First, tell the user about it.
	 app.alert({	 cTitle: “Document Expired”,
				 cMsg: “This print-only document has expired.”,
				 cIcon: 0
			 })
	 // Then, kill it.
	 for (i = 0; i < this.numPages; i++)	{	 // For each page in the document...
		 this.addAnnot({				 // Add a FreeText annotation
			 page: i,
			 type: “FreeText”,
			 rect: [0, 0, 612, 730],	// Cover the entire page
			 alignment: 1,
			 contents: “ “,			 // No message, though we could taunt them
			 fillColor: color.white,
			 textSize: 30,
			 width: 0,
			 readOnly: true
		 })
	 }
	
	 this.flattenPages()			 // Finally, convert the annotations to pdf artwork
}

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 13

“Print-Only” PDF Files

Step-by-Step Let’s see how this JavaScript works.

if (global.jrd_Counter001 == null)	 {
	 global.jrd_Counter001 = 3
	 global.setPersistent(“jrd_Counter001”, true)
}

The first thing our script does is check to see whether there exists a global variable (you did read the
article on the Acrobat global object, didn’t you?) named jrd_Counter001. The name is arbitrary; I wanted
something that was likely to be unique so I don’t stomp on some existing global variable.

This variable will hold a count of the number of times the document may yet be opened. If the variable
doesn’t exist (that is, if it is null), then we shall create, setting its value to 3. Of course, this can be whatever
you wish for the maximum number of times the document can be opened.

We also make the variable persistent, so that it will continue to exist beyond the present Acrobat session.

else
	 global.jrd_Counter001--

If jrd_Counter001 exists, then we decrement it; when the counter reaches 0, the document will have expired.

var localCount = global.jrd_Counter001

We create a local variable named localCount, which is set to the current, probably-now-decremented,
value of jrd_Counter001. This is purely for presentation purposes in this article; the code looked cleaner
with a variable name shorter than “global.jrd_Counter001.”

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 14

“Print-Only” PDF Files

if (localCount > 0)	 {
	 var s = “Please note that this is a \”Print-only\” document.\n\n”
	 ...
	 ...

If localCount is greater than zero (that is, if the document hasn’t yet expired), we shall want to present
some message to the user explaning that he or she has only a few more chances to print the file. We start
by assembling a string to be presented to the end user. I removed most of this code from presentation
here, because it isn’t particularly interesting and is easy to understand by inspection in the js file. The
result of the missing code is that the string s will contain the message telling the user what’s going on.

	 app.alert({ cTitle: “Print-Only Document”,
				 cMsg: s,
				 nIcon: 1
			 })
}

The if clause ends by presenting the user with an alert displaying the string s.

else	{
	 app.alert({	 cTitle: “Document Expired”,
				 cMsg: “This print-only document has expired.”,
				 cIcon: 0
			 })

If the document has expired, we first display an alert informing the user of that fact.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 15

“Print-Only” PDF Files

for (i = 0; i < this.numPages; i++)	{
	 ...
	 ...
}

We then execute a for loop that steps through each page in the document. For each page, we do the
following:

this.addAnnot({
	 page: i,
	 type: “FreeText”,
	 rect: [0, 0, 612, 730],
	 alignment: 1,
	 contents: “ “,
	 fillColor: color.white,
	 textSize: 30,
	 width: 0,
	 readOnly: true
})

This call to the Document object’s addAnnot method places a white, full-page, FreeText annotation on the
current page, effectively covering page’s contents. Note that you might want to change the value of the
contents property, placing some visible text in the annotation; something like “This print-only document
has expired” would do nicely.

this.flattenPages()

Upon exiting the loop, we execute the Document object’s flattenPages method, which converts all of
the annotations within the document into pdf artwork. This is necessary, of course, because it would be
otherwise very easy for the user to remove the FreeText annotations from the pages; converting them all
to pdf rectangles, now just part of the pages’ contents, makes them much more difficult to remove.
																 Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 16

“Print-Only” PDF Files

Limitations There are two obvious limitations to this implementation of a print-only document:

•	 When the document expires, the page contents are not actually removed; they are simply covered
up with a white rectangle. It is perfectly possible for a sophisticated Acrobat user to remove these
rectangles. In my mind, the purpose of the JavaScript is to make it perfectly clear to the user that
I don’t want them to use the electronic version of the document once it has been printed. I can’t prevent
them from circumventing my wishes in the matter, but they will take a very serious hit to their karma.

•	 The global counter on which the JavaScript depends lives on the user’s computer. If the user moves the
document to another computer, he or she will be able to reopen the document another three times.
Thus, the document actually can be opened three times per computer.

These limitations are not fixable using JavaScript. The secure answer to the problem would be to write
an Acrobat plug-in that will actually remove the document’s contents after the document has expired. I’ll
leave this as an Exercise for the Student.

Return to Main Menu

Acumen Journal: PostScript Tech		 17

PostScript & PDF Class Schedule

Schedule of Classes, September–November 2007
Following are the dates of Acumen Training’s upcoming PostScript and pdf classes. Clicking on a class
name will take you to the description of that class on the Acumen training website. These classes are
taught in Orange County, California and on-site at corporate sites world-wide. See the Acumen Training
web site for more information.

PDF Courses PDF 1: File Content
and Structure Oct 1–4

PDF 2: Advanced File
Content Oct 8–11

Support Engineers’ PDF Nov 15–16

PostScript Courses
PostScript Foundations Oct 22–26

Advanced PostScript

Variable Data PostScript Nov 5–9

Troubleshooting
PostScript Sept 18–20 Nov 12–14

Course Fee Classes cost $2,000 per student, except for Troubleshooting PostScript and Support Engineers’ PDF, which are
$1,500 per student. There is a 10% discount for signing up three or more students. If you have four or more
students that need to take a class, it will almost certainly be cheaper to arrange an on-site class.

Return to Main Menu

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF2.html
http://www.acumentraining.com/Descr_TechPDF2.html
http://www.acumentraining.com/Descr_SEPDF.html
http://www.acumentraining.com/Descr_PSF.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_VDPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/onsite.html

Acumen Journal: PostScript Tech		 18

Contacting John

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: www.acumentraining.com/register.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

On-Site Classes Information regarding classes on corporate sites is available at www.acumentraining.com/Onsite.html.
These courses are taught throughout the world; for additional information on classes outside the United
States, go to www.acumentraining.com/OnsitesWorldWide.html.

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
www.acumenjournal.com/AcumenJournal.html

Return to Main Menu

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/Register.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/OnsitesWorldWide.html
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 19

What’s New

What’s New at Acumen Training?

Support Engineers’
PDF is Available The first Support Engineers’ PDF class is scheduled for November 2007; on-site classes are available immedi-

ately.

This two-day, hands-on, technical introduction to the pdf file format discusses the basics of the structure
and contents of a pdf file, emphasizing those parts of the pdf specification most important to printed
documents. The course is a good, quick introduction to pdf structure for people who need to examine
and diagnose troublesome pdf files.

Note that this is a class in the pdf file structure, not the use of Adobe Acrobat. The course does examine
some commercial tools that are useful in the diagnosis of pdf problems.

See the Acumen Training website for a detailed course outline.

XPS File Content
and Structure I am currently working on a new course, XPS File Content and Structure, a four-day, hands-on course

on Microsoft’s XML Paper Specification. The course will be modelled on the PostScript and PDF classes,
emphasizing those parts of the xps that describe marks on a page. The target audience will be printer
engineers working on xml-based printers, support personnel who work with those printers, and software
writers who create xml documents. The course will be available first quarter 2008. Watch the Acumen
Training website for pricing and schedule of classes.

Return to Main Menu

http://www.acumentraining.com/Descr_SEPDF.html

Acumen Journal: PostScript Tech		 20

Feedback

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In particular, I am looking
for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information? Was it well written
and understandable? Do you like it, hate it? Did it seem to have been inexpertly translated from Japanese?

Suggestions for articles. Each Journal issue contains one article each on PostScript and Acrobat. What
topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript? Feel free to email
me about. I’ll answer your question if I can. (If enough people ask the same question, I can turn it into a
Journal article.)

Please send any comments, questions, or problems to:

			 john@acumentraining.com

Return to Main Menu

mailto://john@acumentraining.com

	btnHome:
	btnPrevPage:
	btnNextPg:

