
Table of Contents

The Acrobat User Acrobat 8’s Typewriter Tool
The Typewriter tool in Acrobat 8 seems initially to have no reason for existing. Once you realize what it’s
for, however, you find yourself using it more and more until it becomes one of your favorite tools. This
issue’s short article discusses how much better your life can become with this tool.

PostScript Tech Fun & Games With pathforall
One of PostScript’s less-used operators is pathforall. This operator lets you step through the components
of the current path, performing an operation on each step. This allows you to do some fun and
occasionally very useful things.

Class Schedule July, August, September

What’s New? A new 2–day course: Support Engineers’ PDF
Acumen Training’s curriculum expansion continues with this two-day course on pdf for support engineers.

Contacting Acumen Telephone number, email address, postal address

Acumen Journal, Issue 49 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, July 2007

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 2

PostScript Tech

Fun & Games With pathforall
The pathforall operator allows you to step through the set of moveto, lineto, and other components that
make up the current path and perform some operation on each of them. Though it is rarely used, there
are some interesting things you can do with pathforall, though they are mostly more fun and interesting
than useful.

This month, we shall look at how the operator works and see what it’s good for.

The pathforall
Operator As you know, the moveto, lineto, and other path operators each adds a small wad of data to a PostScript

internal structure called the current path. I usually think of this as a linked list of path elements: a moveto
point, followed by a lineto point, followed by another lineto point, etc. The current path is actually composed
of only four different types of path element: moveto points, lineto points, curveto’s, and closepath’s.

The pathforall operator traverses the list of path elements that makes up the current path, executing a
particular procedure for element.

{ movetoProc } { linetoProc } { curvetoProc } { closepathProc } pathforall

The operator takes as its arguments a set of procedure bodies, each associated with a type of path
element. For each element in the current path, pathforall will push one or more x,y pairs onto the operand
stack and execute the procedure body associated with that type of path element. The arguments each
procedure takes are:

movetoProc	 The x and y coordinates of the moveto point.

linetoProc	 The x and y coordinates of the lineto point.

curvetoProc	 The x and y coordinates of the two control points and end point handed to the curveto operator.

closepathProc	 No arguments.											 Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 3

PostScript Tech

Acumen Journal: PostScript Tech		 3

Fun & Games With pathforall

All of the above coordinates are expressed in current User Space. These may not be the same numbers
that were originally handed to the path operators when the current path was created; if you changed User
Space (with scale, translate, etc.) after creating the current path, the numbers handed to the pathforall
procedures will reflect User Space as it is at pathforall time.

For Example Let’s use pathforall to mess around with the current path. The path we’ll modify will be a simple rectangle;
our original program—without pathforall—is as follows:

The Original Program 100 600 moveto
0 100 rlineto
100 0 rlineto
0 -100 rlineto
closepath

2 setlinewidth
stroke

Pretty simple, but I like to start that way. The output from this program is reproduced above right, just in
case you haven’t seen a rectangle for a while. (Could happen.)

Add pathforall Now let’s add our call to pathforall:

100 600 moveto
0 100 rlineto
100 0 rlineto
0 -100 rlineto
closepath

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 4

PostScript Tech

Acumen Journal: PostScript Tech		 4

Fun & Games With pathforall

{ 5 sub moveto }						 % moveto proc
{ 10 add exch 10 sub exch lineto }		 % lineto proc
{ 20 sub curveto }					 % curveto proc
{ closepath }							 % closepath proc
pathforall

2 setlinewidth
stroke

Looking at the path element procedures, we see that they each modify the coordinates on the stack and
then call their corresponding PostScript operator.

{ 5 sub moveto }		 The moveto procedure subtracts 5 from its y coordinate and then calls moveto.

{ 10 add exch 10 sub exch lineto }
	 The lineto procedure adds 10 to the y value, subtracts 10 from x, and then calls lineto.

{ 20 sub curveto }	 The curveto procedure subtracts 20 from the y value and then calls curveto.

{ closepath }		 The closepath procedure takes no arguments, so it simply calls closepath.

This seems very easy and straightforward. The pathforall operator simply pushes the appropriate
coordinate values on the operand stack and then executes the appropriate procedure. Our procedures
modify the x,y pair on the stack (only one out of three pairs for the curveto procedure) and then execute
the original PostScript operator.

When we stroke the resulting modified path, we imagine the result should be, well, the
modified path.

However, looking at the output at right, we see that the stroked path is the original
square plus the modified path. The pathforall operator doesn’t erase the current path;
the movetos and linetos we called were adding path elements to an existing path.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 5

PostScript Tech

Acumen Journal: PostScript Tech		 5

Fun & Games With pathforall

Replacing the Path If we want to completely replace the original path, our pathforall call must do something very unusual-
looking: our pathforall call must construct a procedure body that will construct our modified path. The new
PostScript program must do the following:

1.	 Create the square current path.

2.	 Use pathforall to construct a procedure body that creates a new, modified current path. (We won’t
execute it quite yet.)

3.	 Destroy the current path.

4.	 Execute our create-a-path procedure body.

5.	 Stroke or otherwise paint it.

A Digression:
Constructing a Procedure We normally create procedure bodies with { braces }, which are the obvious, convenient way of doing

so. However, procedure bodies are really just executable arrays; we can make a procedure by creating an
array and making it executable with cvx.

Thus, the following two lines of PostScript create exactly the same procedure body:

{ 1 2 3 }
[1 2 3] cvx

It’s a bit trickier if our procedure body must hold a call to a PostScript operator. We can’t just write

[72 mul] cvx

Remember that items within between square brackets are operating in a normal PostScript environment.
The executable name mul in the above line would be immediately executed; it would finding a mark
object and the number 72 on the stack and return a typecheck error. This isn’t what we had in mind.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 6

PostScript Tech

Acumen Journal: PostScript Tech		 6

Fun & Games With pathforall

Instead we’ll have to do the following:

[72 /mul cvx] cvx

This curious-looking piece of code does the following:

•	 Push a mark object on the stack (that’s what the open bracket does, remember).

•	 Push the number 72 on the stack.

•	 Push the literal name mul on the stack. (Since it’s literal, the name is not immediately looked up and
executed.)

•	 Convert the literal name mul to an executable name with cvx.

•	 Finish the array (with the close-square-bracket).

-	 We now have on the stack an array that contains a number and an executable name.

•	 Convert the newly-made literal array to an executable array (that is, a procedure body) with cvx.

A bit more roundabout than { 72 mul }, but it gets the job done.

Back to pathforall In order for our call to pathforall to actually replace the current path, rather than just add to it, we shall
arrange for pathforall to actually create a procedure that constructs a new path. When the operator
returns, we can delete the current path (with newpath) and then execute our new procedure.

Here’s the code:

100 600 moveto	 % Create the square path
0 100 rlineto
100 0 rlineto
0 -100 rlineto
closepath

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 7

PostScript Tech

Acumen Journal: PostScript Tech		 7

Fun & Games With pathforall

[% Push a mark onto the stack
	 { 5 sub /moveto cvx }						 % moveto proc
 { 10 add exch 10 sub exch /lineto cvx } 	 % lineto proc
 { 20 sub /curveto cvx }					 % curveto proc
 { /closepath cvx }						 % closepath proc
 pathforall	 % Call pathforall
] cvx			 % Finish the array and make it executable
bind				 % Bind it (out of habit)

newpath			 % Erase the currentpath
exec				 % Execute the newly-created procedure, creating a new path
2 setlinewidth
stroke			 % Stroke the path

The new output looks like the path at right. Note that the original square is no longer present. We have
completely replaced it with our new, modified path.

Step-by-step Let’s look at the call to pathforall in a little more detail:

[

We start with an open bracket that puts a mark object on the stack.

{ 5 sub /moveto cvx }

This is the moveto procedure. When pathforall executes this procedure, the x and y coordinates of the
moveto point will be already on the operand stack. The procedure subtracts 5 from the y value and then
pushes the executable name moveto onto the stack (by converting the literal name to executable).

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 8

PostScript Tech

Acumen Journal: PostScript Tech		 8

Fun & Games With pathforall

{ 10 add exch 10 sub exch /lineto cvx }
{ 20 sub /curveto cvx }
{ /closepath cvx }
pathforall

The other three procedures are similar to the moveto procedure; they all modify the values of their x,y
arguments and then push the executable name of their corresponding operator.

The pathforall operator executes the appropriate procedure for each element in the current path. Upon
its return, the operand stack will contain a mark and, piled on top of it, all of the x and y values (some of
them modified) and the executable operator names that were used to construct the current path.

] cvx

The close bracket then collapses the entire contents of the operand stack, down through the mark object,
into an array; cvx makes that array executable. What we have on the operand stack is now a procedure
body that will recreate the current path with our modifications applied.

Note that at this point the original current path is still in place.

newpath
exec

Now we erase the current path with newpath and then immediately reconstruct it, with changes, by
executing our newly-made procedure body.

Our modified current path has replaced the original, as we set out to do.

Randomizing a Path Let’s build on the previous example to use pathforall to randomize a path, that is, to add a random offset
to each of the points in the current path.

We shall use the rand operator to generate our offsets. This operator returns a positive integer on the
range 0…2³¹–1; we shall convert each random integer to a floating point value on the range –10…10 and
add the result to each x and y in the current path.								 Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 9

PostScript Tech

Acumen Journal: PostScript Tech		 9

Fun & Games With pathforall

Making a
Randomized Path Here’s the PostScript code:

/RandomScale 10 def

/CalcOffset % --- => n’
{	 rand 1001 mod 500 sub 500 div RandomScale mul } bind def

/RandomizePoint % x y => x’ y’
{ CalcOffset add exch CalcOffset add exch } bind def

/MakePathProc % --- => { proc }
{	 [
 { RandomizePoint /moveto cvx }
 { RandomizePoint /lineto cvx }
 { 3 { RandomizePoint 6 2 roll } repeat /curveto cvx }
 { /closepath cvx }
 pathforall
]
	 cvx bind
} bind def

100 600 moveto	 % Create square path
0 100 rlineto
100 0 rlineto
0 -100 rlineto
closepath

MakePathProc		 % Create new “pathproc” (leaving the proc on the stack
Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 10

PostScript Tech

Acumen Journal: PostScript Tech		 10

Fun & Games With pathforall

stroke			 % Stroke the original path

exec				 % Execute the pathproc, creating the new, randomized path
1 0 0 setrgbcolor	% Stroke the new path with a red line
3 setlinewidth
stroke

showpage

Let’s look at this in a bit of detail.

Step by step /RandomScale 10 def

We start by defining a constant named RandomScale, which will be the maximum value for our random
offsets.

/CalcOffset % --- => n’
{	 rand 1001 mod 500 sub 500 div RandomScale mul } bind def

Our CalcOffset procedure returns a random number between –RandomScale and +RandomScale. There
are lots of ways to convert a positive integer into a floating point value on a given range; I’m using a way
that is conceptually simple, though some of you may prefer other algorithms that produce better, more-
random results; you are invited to write your own procedure.

This procedure does the following:

1.	 Use the rand operator to get a random integer.

2.	 Mod this by 1000, yielding a random integer on the range 0…999.

3.	 Subtract 500 from this, yielding an integer on the range –500…499.

4.	 Divide by 500, resulting in a floating point value between –1 and (almost) 1.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 11

PostScript Tech

Acumen Journal: PostScript Tech		 11

Fun & Games With pathforall

Multiply this by our RandomScale, giving us a floating point value on the proper range.

/RandomizePoint % x y => x’ y’
{ CalcOffset add exch CalcOffset add exch } bind def

The RandomizePoint procedure takes an x,y pair from the stack and applies a random offset to each of the
two numbers, leaving the modified values on the stack.

/MakePathProc % --- => { proc }
{	 [
 { RandomizePoint /moveto cvx }
 { RandomizePoint /lineto cvx }
 { 3 { RandomizePoint 6 2 roll } repeat /curveto cvx }
 { /closepath cvx }
 pathforall
]
	 cvx bind
} bind def

The MakePathProc procedure uses the technique from the previous example to create a make-a-path
procedure, leaving this procedure on the stack as its return value. Note that each of the four path-element
procedures apply the RandomizePoint procedure to its x,y arguments.

100 600 moveto	 % Create square path
0 100 rlineto
100 0 rlineto
0 -100 rlineto
closepath

Now we construct our square path.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: PostScript Tech		 12

PostScript Tech

Acumen Journal: PostScript Tech		 12

Fun & Games With pathforall

MakePathProc
stroke

And then call MakePathProc, which leaves a path-construction procedure on the stack.

Since MakePathProc has no effect on the current path, we can immediately call stroke, which draws the
original path onto the page.

exec				 % Execute the pathproc, creating the new, randomized path
1 0 0 setrgbcolor	% Stroke the new path with a red line
3 setlinewidth
stroke

Finally, we execute the path-construction procedure, which creates the randomized
version of our original path, and then stroke the new path with a red line.

showpage

And then we eject the page.

Useful Operator The pathforall operator can be a useful little guy, if not very often. When you need it, there’s no substitute.

For example, one of the most common text-along-a-path algorithms uses pathforall.

A pity we don’t have time to talk about it in this issue.

Later, perhaps.

Return to Main Menu

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User	 13

Acrobat User

Acrobat 8 Typewriter Tool
The Typewriter tool in Acrobat 8 is a bit of a sleeper. The first
dozen times I worked with Acrobat 8, I could not imagine why
anyone would use this tool; it didn’t seem to offer anything of
any particular value and had all the characteristics of just being a
pet project of someone significant on the Acrobat 8 design team.

Live and learn, I suppose. Having used Acrobat 8 for nearly a year, now (counting the time I was working
on the Acrobat 8 Visual Quickstart book, of which you should buy several, by the way), I have found the
Typewriter tool to be extremely useful on frequent occasion. It’s not something I use every day, but when
I use it, I’m very glad it’s there.

Let’s look at what it does.

The Scenario The circumstance under which I use the Typewriter tool is actually
pretty common: when I receive and need to fill out a paper form,
either scanned or as actual paper (quaint, but it happens).

Consider the form at right, emailed to me as a pdf file. Although
this file is in pdf format, it is not really a form, in the pdf sense
of the word. There are no interactive elements on the page; the
form fields are just lines drawn on the page, not text fields or
checkboxes into which I can type information.

If this were a form I would use repeatedly—if I were converting
my own paper form into a pdf form for sending to many
customers, for example—I would lay pdf form fields on top of
the page’s lines and rectangles, converting it into a true pdf form.
									 Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 14

Acrobat 8 Typewriter Tool

However, this was a form was created and sent to me by another company (it could have been a tax ID
form, for example); I just want to fill the form out, send it back, and get on with my life.

This is what the Typewriter tool is for.

The Typewriter Tool The Typewriter tool allows you to conveniently fill out paper
form fields by placing text annotations directly on the pdf page.
You simply click on the tool and the cursor turns into a standard
I-Beam. Click anywhere on the page and type the text you want.

I used to do this with the Free Text annotation tool. In fact, the Typewriter tool leaves on the page what
appears in every way to be a Free Text annotation. However, with the
Free Text tool, I was forever discovering that I’d left the tool’s defaults
so it drew red text against a blue background, or something equally
inappropriate to an official form. This entailed an easy (but nonetheless
annoying) trip to the annotations’ Properties dialog box.

The Typewriter tool provides convenience, pure and simple; click and type and that’s it. You can type
multiple lines of text, as at right, and double-clicking on the typed
text gives you a border that you can drag around in order to fine-
tune the text’s position on the page.

Note the border also has standard handles at the sides and corners
that allows you to change the size of the text box. Resizing the text box does not change the size of the
text, as you might expect; it simply changes the size of
the box to which the text is wrapped. As you change the
size of the box, Acrobat wraps the text as necessary to
keep it within the box; text that wraps beneath the bot-
tom of the box disappears from view.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 15

Acrobat 8 Typewriter Tool

Changing Text Size
and Leading If you double-click on the typewritten text, Acrobat gives you

back the blinking I-beam cursor and lets you select and edit the
text.

At this point, you can also use the Text Size and Text Leading
tools to change the size of the text and the distance between successive lines of text within the text
block. These changes apply to the entire block of text; there is no way to change the properties of only a
word or two within the block. The intent is to make your typewritten text match the spacing and size of
the form fields over which you are typing.

There is also no way to change the font used by the Typewriter tool; you are pretty much restricted to
Courier. This seems like a more serious limitation than it really is; the purpose of the tool is to fill out
printed forms and, for this, Courier works adequately well. Still, I do often wish that I could change to a
proportional font.

Compatibility As I said earlier, the Typewriter tool adds a variation of a Free
Text annotation to the pdf page. Like all annotations, the
Typewriter text appears among the comments in the Comments
navigation pane along the left edge of your document windows
(at right, top).

Interestingly, earlier versions of Acrobat can open the file and
display the typewritten text, as well. Acrobat versions 5 and
later see the text as a standard Free Text comment (right,
bottom). I haven’t tried to open a typewritten file with
Acrobat 4, but I’ll bet that would work, too.

Next Page ->

Acumen Journal, Issue 48 © 2007 John Deubert, Acumen Training	�

John Deubert’s Acumen Journal, March 2007

Acumen Journal: Acrobat User		 16

Acrobat 8 Typewriter Tool

So, What’s Bad? Not much, actually, within the context of the tool’s purpose. The only two things I have found irksome
when using the tool are:

•	 I wish you could change the font; not a big deal, but Courier is such an ugly font.

•	 Every time you want to start a new piece of text (when moving from “Name” to “Address,” for example,
you need to click again on the Typewriter tool button. Again, not a real trial, but surprisingly annoying
when you are filling out a large form with a lot of small fields. (It’d be nice if clicking outside of the
current block of text would start a new one.)

Otherwise, this is a surprisingly useful tool and I recommend you experiment with it.

Return to Main Menu

Acumen Journal: PostScript Tech		 17

PostScript & PDF Class Schedule

Schedule of Classes, July–October 2007
Following are the dates of Acumen Training’s upcoming PostScript and pdf classes. Clicking on a class
name will take you to the description of that class on the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide. See the Acumen
Training web site for more information.

Course Fee Classes cost $2,000 per student, except for Troubleshooting PostScript, which is $1,500 per student.
There is a discount for signing up three or more students. If you have four or more students that need to take a
class, it will almost certainly be cheaper to arrange an on-site class.
 Register on Acumen Training website

Return to Main Menu

PDF 1: File Content
and Structure Aug 13–16 Oct 1–4

PDF 2: Advanced File
Content Oct 8–11

PostScript Foundations Jul 30–Aug 3 Sept 17–21

Variable Data
PostScript

Advanced PostScript

Troubleshooting
PostScript Aug 27–29

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/registration.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_TPS.html
http://www.acumentraining.com/Descr_TPS.html

Acumen Journal: PostScript Tech		 18

Contacting John

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to Main Menu

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/acumenjournal.html

Acumen Journal: PostScript Tech		 19

What’s New

What’s New at Acumen Training?

Support
Engineers’ PDF Support Engineers’ PDF is a two-day, hands-on, technical introduction to the pdf file format. It discusses the

basics of the structure and contents of a pdf file, emphasizing those parts of the pdf specification most
important to printed documents. The course is a good, quick introduction to pdf structure for people who
need to examine and diagnose troublesome pdf files.

Note that this is a class in the pdf file structure, not the use of Adobe Acrobat. The course does examine
some commercial tools that are useful in the diagnosis of pdf problems.

Course Outline
Day 1 	 •	 PDF Data Types	 	 	 • Simple Drawing

•	 PDF Objects	 	 	 • Introduction to Color
•	 PDF File format	 	 	 • Drawing Text
•	 The Page Tree	 	 	 • Coordinate Transforms
•	 Content Streams	 	 	 • Compression & Transmission Filters

Day 2 	 •	 Color and Color Spaces		 • PDF Font Structure
•	 Image XObjects	 	 	 • Examination of Common PDF Files
•	 Form XObjects	 	 	 • PDF/X & PDF/A
•	 Transparency	 	 	 • PDF Troubleshooting Tools

Availability Support Engineers’ PostScript will be available July 2007. Watch the Acumen Training website for pricing
and schedule of classes.

Return to Main Menu

Acumen Journal: PostScript Tech		 20

Feedback

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In particular, I am looking
for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information? Was it well written
and understandable? Do you like it, hate it? Did it seem to have been inexpertly translated from Japanese?

Suggestions for articles. Each Journal issue contains one article each on PostScript and Acrobat. What
topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript? Feel free to email
me about. I’ll answer your question if I can. (If enough people ask the same question, I can turn it into a
Journal article.)

Please send any comments, questions, or problems to:

			 john@acumentraining.com

Return to Main Menu

mailto://john@acumentraining.com

	btnHome:
	btnPrevPage:
	btnNextPg:

