
Table of Contents

The Acrobat User Customizing Acrobat 8 Toolbars
Acrobat 8 makes it remarkably simple to add and remove controls from its toolbars. This
month’s short article demonstrates how to do this.

PostScript Tech Extracting Text from a PostScript File
This month we shall see how to use redefinitions of PostScript operators to extract the
text from a PostScript file.

Class Schedule January, February, March

What’s New? Announcing Acrobat 8 Visual Quickstart Guide

The Book is out. It makes a wonderful gift.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 46 © 2006 John Deubert, Acumen Training

John Deubert’s Acumen Journal, December 2006

Acrobat User

Acumen Journal: Acrobat User �

Customizing Acrobat 8 Toolbars
I like Acrobat 8 better than I did its previous two predecessors. Many of the more
 sophisticated features of Acrobats 6 and 7 (digital signatures, group reviews, etc.) were
hard for unsophisticated users to work with. In some cases, there was no reasonable way
to work with these features without having an it department set up server processes
and do other background chores.

Acrobat 8 has addressed these problems and is one of the best
 versions of Acrobat I have seen in a while. In writing the Acrobat 8
Visual Quickstart Guide (of which you need to buy many copies), I
had a good opportunity to learn the workings of Acrobat 8 in detail.

The next few Journal articles will look at some of the new features
and the improvements in some of the old features. We are going
to start this month with a short article on a simple, yet powerful,
 feature: the ability to modify the contents of Acrobat’s toolbars.

Next Page ->

Acumen Journal: Acrobat User �

Customizing Acrobat 8 Toolbars

Acrobat 8 Toolbars Like the previous two versions of Acrobat, the new
 version has a very large number of toolbars for a variety
of special purposes. I didn’t like this at first, but now
I’ve come to see this as a benefit; Acrobat has such a
very large set of abilities that it is useful to be able to
make visible only those toolbars you need at a particular
moment. When I am annotating a pdf file, I make the
Comment & Markup toolbar visible; otherwise, I leave it
hidden and out of the way.

As in the past, you can choose which toolbars should be
visible using the View > Toolbars submenu, selecting those toolbars that you want to be
able to see.

A major ui difference between Acrobat 8 and
previous versions is that the toolbars are now
attached to the top of each document window, as
at right. I’m not clear as to the intended benefit of
this ui feature; it seems to use up a lot of window
area that could otherwise be used to display the
document.

On the positive side, Acrobat 8 allows you to tailor the contents of the individual
toolbars so that you need only see the controls you are likely to use within each toolbar.
This is our topic for the month. Next Page ->

Acumen Journal: Acrobat User �

Customizing Acrobat 8 Toolbars

Customizing the Page
Navigation Toolbar Let’s see how to customize a toolbar by adding tools to one of the most-used toolbars:

Page Navigation. This toolbar has the controls you routinely use to move around within
your document. The default Page Navigation toolbar is rather skimpy,
as at right. It contains only a pair of arrows for moving to the next
and previous pages and a text field into which you may type a page
number, moving you to that page in the document.

Where are the First Page and Last Page buttons? The Next
and Previous View buttons (which I find indispensible)?
They exist in Acrobat 8, but don’t by default reside in the
Page Navigation (or any other) toolbar; we need to add
them.

We do this by selecting View > Toolbars > More Tools.
Acrobat 8 will display the More Tools dialog box (next
page).

Next Page ->

Acumen Journal: Acrobat User �

Customizing Acrobat 8 Toolbars

More Tools Dialog Box The More Tools dialog box displays a hierarchical list
of all the toolbars contained in Acrobat and the items
that can appear in each toolbar.

Each item in the list has a checkbox next to it; if the
checkbox is selected, that item is visible, otherwise,
it’s hidden. It’s exactly as simply as that! Just “turn on”
the checkboxes corresponding to items you want to
appear in a toolbar (and turn off those you don’t want).

For example, the entries for
the Page navigation toolbar
initially look like the illustration
at right; only three of the
seven entries are selected,
indicating the default
 contents of the toolbar. (Note
there is also a checkbox for the entire Page Navigation
Toolbar, indicating whether the toolbar itself should be visible.)

Next Page ->

Acumen Journal: Acrobat User �

Customizing Acrobat 8 Toolbars

To modify the toolbar’s content, simply select the items you want to
reside in the toolbar and uncheck those you don’t want. For the
Page Navigation toolbar, I select everything; I use all those buttons.

When you exit from the More Tools dialog box, the changes you
made will be applied to the toolbars; the Page Navigation toolbar
as I use it looks like the illustration, below right.

Toolbar Thoughts I admit to being of two minds about the multiplication
of toolbars that Adobe introduced with Acrobat 6.
I’ve always been a minimalist with regard to toolbars;
I don’t like buttons cluttering up my screen unless I frequently use the corresponding
commands and they are inconvenient to invoke using the keyboard or menus (perhaps
because the commands are buried three deep in the menu hierarchy).

On the other hand, when we were doing final edits on the Acrobat 8 Visual Quickstart
Guide (did I mention the new book?), it was very convenient to be able to make all of
the comment and markup tools available for use in a toolbar (specifically, the Comment
& Markup toolbar) and then have them all go away again (by unselecting the toolbar in
the View > Toolbars menu) when I was done.

In this imperfect world, it is probably not bad to have a large number of toolbars, most of
which I can leave invisible. And to be able to control the contents of the toolbars makes
me much happier; I can be as minimalist or lavish with toolbar commands as I wish.
 Return to Main Menu

Acumen Journal: PostScript Tech �

Extracting Text From a PostScript File
One question that recurs on the PostScript newsgroup is how to extract text from a
PostScript file. That is, given a PostScript program that prints pages of text, how could
one write that text (and only the text) to a separate file?

There are presumably several ways to do this; I wouldn’t doubt that among GhostScript’s
myriad command line flags, there is one that cause the text operators to dump their
arguments to stdout. Doing it entirely within PostScript, however, the technique that
seems most obvious is to redefine the PostScript show operator and its variants so that
they send their string arguments to some convenient destination on the rip’s hard disk.

That is what we shall do this month.

Next Page ->

PostScript Tech

Acumen Journal: PostScript Tech �

Extracting Text From a PostScript File

Redefining Operators Part of PostScript’s charm is that you can redefine its operators, allowing you to change
the behavior of existing PostScript code. A perfectly respectable PostScript program
that prints a block of text, such as the following:

/xys % (str) x y => ---
{ moveto show } bind def

/Helvetica 15 selectfont
(The flowers that) 72 700 xys
(bloom in the) 72 682 xys
(Spring) 72 664 xys

(Tra-la!) 72 646 xys

can be made much more creative (in the sense of “unreadable”) by adding the following
definition to its beginning:

/moveto { moveto rand 20 mod 10 sub rotate } bind def

Now, when the xys procedure calls moveto, it will call our
moveto, which does a random rotation each time it’s called.

“But, wait!” I hear you say. “Doesn’t our moveto procedure
make a recursive call to itself?”

Nope. Remember from your PostScript class that the bind
operator replaces the executable name moveto in the
 Next Page ->

The flowers that
bloom in the

SpringTra-la!

Acumen Journal: PostScript Tech �

Extracting Text From a PostScript File

procedure body with the operator definition of moveto. There is no name to be looked
up at execution time. As a corollary, the bind is vital to the redefinition; without it, the
moveto procedure would repeatedly call itself and our program would die with an
 execstackoverflow error.

Extracting Text What we are going to do is redefine show and all of its variants so that they send the
contents of their string arguments to stdout. The PostScript program on which we shall
test our redefinitions is this:

/LM 72 def
/LnHt 17 def

/nl
{ //LM currentpoint //LnHt sub exch pop moveto } bind def

/snl % (str) => ---
{ show nl } bind def

/dh % dx => ---
{ 0 rmoveto } bind def

/Helvetica 15 selectfont
72 700 moveto

Next Page ->

Acumen Journal: PostScript Tech 10

Extracting Text From a PostScript File

(It is better to keep your mouth closed) snl
(and let people think you ar)show -.5 dh
(e a fool) snl
(than to open it) snl
(and remo)show -.37 dh
(v) show -.37 dh
(e all doubt) snl

showpage

There is nothing too unusual here. We define
a few utility procedures, which we then use to
print four lines of text.

Note that the a number of these lines of text
are printed with multiple calls to show; these
represent lines with kerning pairs in them, pairs of characters whose spacing needs to
be adjusted because they will look too far apart if printed with their bounding boxes
abutting, as normal. This will present a problem for us later, as we shall see.

Next Page ->

It is better to keep your mouth closed
and let people think you are a fool
than to open it
and remove all doubt

Acumen Journal: PostScript Tech 11

Extracting Text From a PostScript File

First show
redefinition The simplest redefinition of show we can use to extract text simply sends its string

 argument to stdout by calling the = procedure:

/show /= load def

If we place this definition at the start of our earlier program, what gets sent to stdout is a
series of newline-delimited lines of text:

 It is better to keep your mouth closed
 and let people think you ar
 e a fool
 than to open it
 and remo
 v
 e all doubt

It is immediately evident that we are going to need to address the kerning pairs sooner
rather than later. Each of the calls to show in the kerning pairs generates a fresh line of
text to stdout. We can go through and stitch them together by hand, but that becomes
boring after a very short while.

Next Page ->

Acumen Journal: PostScript Tech 1�

Extracting Text From a PostScript File

Second show
Redefinition To fix this, we need a more sophisticated redefinition of show. Our new show will

 compare the current y value to the previous text snippet’s y; if they are different, we
shall emit a newline before sending the new text to stdout; if they are the same then
we shall take the new text to be a continuation of the previous and send it to stdout
 without the delimiting newline.

As a first approximation, here’s our new show redefinition (and some ancillary definitions):

/lastY 0 def % Previous text’s y position
/yTolerance .1 def % Tolerance for determining same line

/show
{ currentpoint exch pop % Get the current y position
 dup lastY sub abs % Subtract from previous y value
 yTolerance gt % Compare to our tolerance value
 { (\n) print % If greater, emit newline...
 /lastY exch def } % ...and update lastY
 { pop } % Otherwise, discard the y value
 ifelse
 print % Send text to stdout
} bind def

Next Page ->

Acumen Journal: PostScript Tech 1�

Extracting Text From a PostScript File

Now when we prepend this to our earlier PostScript example, we get the following text
to stdout:

 It is better to keep your mouth closed
 and let people think you are a fool
 than to open it
 and remove all doubt

Our new show redefinition successfully knits together the kerned text pieces into single
lines of text.

Let’s look at this in detail.

Step by step /lastY 0 def
/yTolerance .1 def

We start by defining a couple of variables. lastY will hold the previous text’s y value;
we initialize it to zero because we have to choose something. yTolerance is a threshold
value indicating that the current piece of text is a different line than the previous; if the
 difference between the y positions of the current text and the previous text is greater
than this value, we shall emit a newline, separating the two pieces of text. A difference
of 0.1 seems like a reasonable value for this variable.

/show
{ currentpoint exch pop % stack: (str) y

Our show redefinition starts by getting the current y value.

Next Page ->

Acumen Journal: PostScript Tech 1�

Extracting Text From a PostScript File

dup lastY sub abs % (str) y ∆y

We duplicate the y value and then subtract it from lastY, converting the difference to a
positive value.

yTolerance gt % (str) y bool

We compare the difference to our yTolerance value, leaving a Boolean value on the stack
that will be true if the difference is greater than the threshold value.

{ (\n) print /lastY exch def } % (str)

If the Boolean is true, we print a newline to stdout and then redefine lastY to be our
 current y value.

{ pop } % (str)

Otherwise, we discard the y value.

ifelse % (str)

This is the ifelse that selects between the two alternative procedure bodies. Both of
the conditionally-executed procedures leave the original string—the show operator’s
 original argument—on the stack.

 print
} bind def

Our show ends by sending the string’s contents to stdout using the print operator.
Remember that print, unlike the similar = operator, doesn’t follow its output with a newline.

Next Page ->

Acumen Journal: PostScript Tech 1�

Extracting Text From a PostScript File

Third show Our previous redefinition is fine as a first approximation, but it has a glaring weakness:
it is doing all of its y-value-related calculations in User Space; a threshold of 0.1 is a
 reasonable value for default User Space, but what if the text is being set in a coordinate
 system that has been heavily scaled? We cannot know the physical distance to which
our threshold of 0.1 really corresponds.

So what to do?

A reasonable solution would be to do our y calculation and comparison in Device Space.
If we convert the current point coordinates to Device Space, we do not need to care
about the particular User Space values that got us to that position.

This is very easily achieved; here is our new redefinition code:

/lastY 0 def
/yTolerance 2 def

/show
{
 currentpoint transform exch pop
 dup lastY sub abs yTolerance gt
 { (\n) print /lastY exch def }
 { pop }
 ifelse
 print
} bind def

Next Page ->

Acumen Journal: PostScript Tech 1�

Extracting Text From a PostScript File

Step by step The changes we have made are these:

/yTolerance 2 def

Since we are going to be converting our coordinates to Device Space, our threshold
value must now be also expressed in Device Space. On a 600-dpi device, a threshold of 2
corresponds to 1/300-point, which seems adequate.

currentpoint transform exch pop

We have added a call to transform to our show redefinition. This operator, you may recall,
converts a User Space x,y pair to Device Space:

 transform % stack: xusr yusr => xdvc ydvc

Thus, the exch pop leaves the current Device Space y value on the stack.

So now we don’t need to worry about what aberrant changes the “host” PostScript code
makes to User Space in printing its text.

Not Quite Done Yet There are still two weaknesses we need to address.

Rotation issues Firstly, our current redefinition can still be fooled by rotate. For example, if the text
is being printed with a rotation of 90°, then two successive show calls that represent
the same line of text will have the same x coordinate, but differing y values, exactly
the opposite of our redefinition’s assumption. Next Page ->

W
e

B
Ro

ta
te

d

Acumen Journal: PostScript Tech 1�

Extracting Text From a PostScript File

The easiest way to fix this is to simply kill the rotate operator:

 /rotate /pop load def

Now rotate discards its argument and has no effect on the User Space and, therefore, the
orientation of our text. This means the text will come out looking wrong on the page,
but we don’t intend to actually print this PostScript code, anyway.

If you are feeling a bit paranoid, you might also put a pin through any other operator
that can be used to rotate the coordinate system:

 /concat /pop load def
 /setmatrix pop load def

Device Space Variations Finally, and a bit more subtly, our redefinition also assumes that vertical movement
on the page converts into a change in y in Device Space. This is not necessarily the
case. In most devices, the direction of the Device Space y axis matches the direction of
paper movement; a printer whose paper feeds long-edge-first will likely have vertical
 movement convert into motion along the Device Space x axis, invalidating our check of
whether two successive show calls represent the same line of text.

The simplest fix for this is to force a known Device Space on the printer. This will certainly
not match the real characteristics of the printing device, but, again, we don’t plan on
actually printing this file, so it doesn’t matter.

Next Page ->

Acumen Journal: PostScript Tech 1�

Extracting Text From a PostScript File

We override the interpreter’s default Device Space with a call to setmatrix:

 [4 0 0 -4 0 0] setmatrix

The above line of PostScript sets the interpreter’s current transformation matrix to
 something consistent with a 288 dpi device. (Review your PostScript Foundations notes
to see how the ctm contents relate to a device’s resolution.) Again, it doesn’t at all matter
what the resolution or other characteristics of the device actually are; we just need
something that will give us consistent results across all devices.

While we’re about it, we should disable any operators that change or initialize the CTM.
This should certainly include setpagedevice, initgraphics, and initmatrix; depending on our
level of paranoia, it cound also operators such as letter, legal, a4, initigraphics, and initmatrix:

 /setpagedevice /pop load def
 /initgraphics /pop load def
 /initmatrix { } def
 /setmatrix /pop load def

Show Variants Finally, we should redefine not only the show operator, but also all of its variants:

/ashow { show pop pop } bind def
/widthshow { show pop pop pop } bind def
/awidthshow { show pop pop pop pop pop } bind def
/xshow { pop show } bind def

The above are the most important redefinitions; you may want to add xyshow, kshow,
and the others to the list. Next Page ->

Acumen Journal: PostScript Tech 1�

Extracting Text From a PostScript File

By the way, these redefinitions are using our new show definition, so they must follow
the latter in your code.

Final Versions Having killed the rotate operator, set our ctm to something dependable, and hunted
down every last show variant, our complete set of PostScript redefinitions looks like this:

/lastY 0 def % Previous text’s y-value
/yTolerance 2 def % Same-string y threshold
/rotate /pop load def % Prevent rotate
/setpagedevice /pop load def % Kill setpagedevice
/initgraphics /pop load def % Disable initgraphics
/initmatrix { } def % Throttle initmatrix

[4 0 0 4 0 0] setmatrix % Set the CTM to a known value...
/setmatrix /pop load def % ...& then mask setmatrix

/show % The show redefinition
{ currentpoint transform exch pop % Get our current Dvc Space y
 dup lastY sub abs yTolerance gt % Compare to previous y
 { (\n) print /lastY exch def } % Over threshold? Emit a newline
 { pop } % Otherwise, throw away the y value
 ifelse
 print % Send text to stdout
} bind def

Next Page ->

On the Web Site

This PostScript code is
on the Acumen Training
Resources page. Look for
ExtractText.ps.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech �0

Extracting Text From a PostScript File

/ashow { show pop pop } bind def % Redefine all the show variants.
/widthshow { show pop pop pop } bind def
/awidthshow { show pop pop pop pop pop } bind def
/xshow { pop show } bind def

Just paste this in front of any PostScript code and you should be able to extract the text.

Caveat I haven’t tested this extensively. It seems to work well with the PostScript output that I
had immediately at hand, but I don’t doubt that there will be some PostScript programs
that will defeat it. Feel free to modify this as you wish; if you come up with modifications
that fix incompatibilities with some software’s output, feel free to send them to me; I’ll
post the fix—properly credited—on the website alongside my original file.

Return to Main Menu

Schedule of Classes, January–March 2007
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class on
the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student. Registration Info

PDF File Content
and Structure 1

Jan 22–25

Mar 5–8

PDF File Content
and Structure 2

Feb 5–8

PostScript
Foundations Jan 15–19 Mar 19–23

Variable Data
PostScript Feb 12–16

Advanced
PostScript Apr 9–12

PostScript for
Support Engineers Mar 12–15

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html

Acrobat Class Schedule

I shall be presenting the Acrobat for the Enterprise class in March 2007.

Watch for it!

 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Acrobat 8 Visual
Quickstart Guide This should be available at Finer Bookstores Near You. This

newly-written Visual Quickstart Guide steps you through all
the important things you can do with Acrobat 8, covering
everything from launching the application through conducting
company-wide document reviews. The books introduces you
to creating Acrobat forms, describes how to import a wide
variety of images and other files into pdf, and steps you
through the intricacies of digital signatures.

Buy several copies! The kids will love it for Christmas.

Trust me.

 Return to First Page

What’s New?

Acumen Journal: What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
 particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it cause indigestion?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acumen Journal

Acrobat Forms Preferences

Acumen Journal

More Tools Dialog Box

	btnHome:
	btnPrevPage:
	btnNextPg:

