
Table of Contents

The Acrobat User Acrobat Page Capture
Acrobat’s built-in OCR functionality allows you to turn a folder full of scanned
documents into selectable, searchable text and graphics.

PostScript Tech Explicitly Masked Images, Part 2
We continue last June’s discussion of masked images, this
time seeing how to do it with real images. This will entail
learning about the ReusableStreamDecode filter.

Class Schedule October, November, December, January

What’s New? Finished a new book: Acrobat 8 Visual Quickstart Guide
Coming out in November from Peachpit Press.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 45 © 2006 John Deubert, Acumen Training					�

John Deubert’s Acumen Journal, October 2006

Acrobat User

Acumen Journal: Acrobat User	 �

Acrobat Page Capture
One task common to many organizations is the
conversion of a large collection of paper documents
into pdf. Typically, these documents are scanned and
the scanned pages are assembled into a pdf document.

While the resulting pdf pages look like the original
pages of text, there is, in fact, no text on them at all.
Rather, each page contains a bitmapped picture of the original text, rather than the text,
itself, illustrated above right.

This is perfectly fine if you simply want to read the documents by eye. However, if you
want to apply any of the common computer text functions to the contents of the
document (such as searching for words or phrases), then you must convert the bitmap
text to actual text, a process known as Optical Character Recognition or ocr for short.

As it happens, Acrobat has ocr capability built into it and can convert your scanned
pages into real pages of searchable text. Adobe calls this feature Acrobat Page Capture.

In this issue, we shall see how to use this feature.

Next Page ->

Acumen Journal: Acrobat User	 �

Page Capture

Acrobat Page
Capture Acrobat’s Page Capture can take an image-only pdf file (that is, a pdf file whose pages

consist only of image data, usually from a scanner) and apply ocr to determine the text
that is on the page. Acrobat can create two kinds of pages from this conversion:

•	 Searchable Image - In this case, Acrobat leaves the
image untouched so that the page looks exactly as
it did originally. The searchable text is added as an
invisible layer that will be used by Search and other
text functions.

	 While the converted document is searchable, the visual page remains a bitmap, so if
you zoom in on the page, the text looks increasingly jagged.

•	 Text and Graphics - Acrobat replaces the full-page image with a combination of text
and line art, attempting to use the original fonts.

	 While this allows you to zoom in on the page
indefinitely without being distracted by escalating
jaggies, the font that Acrobat picks will probably
not quite match the original, so the text will change
its appearance. (Compare the text at right with the
original bitmap text, on the previous page; they are
clearly different fonts.)

Next Page ->

Acumen Journal: Acrobat User	 �

Page Capture

Converting an
Image to Text To convert a pdf image document to a

searchable image or to text and graphics,
do the following:

1.	 With the scanned documen open,
select Document>Recognize Text Using
OCR>Start. Acrobat will present you
with the Recognize Text dialog box
(below, right).

2.	 Choose the radio button corresponding
to the pages you want converted to a
searchable image.

	 Most of the time, you will probably choose
All pages.

3.	 Click the Edit button.

	 Acrobat will present you with the
Recognize Text Settings dialog box, on the
next page.

Next Page ->

Acumen Journal: Acrobat User	 �

Page Capture

4.	 In the PDF Output Style pop‑up
menu, select the type of
conversion you want Acrobat to
perform. Your options are:

•	 Searchable Image (Exact) -
Acrobat creates a searchable
image using a very accurate algorithm to convert the
text.

•	 Searchable Image (Compact) - Acrobat creates a
searchable image, but uses a faster and slightly less-accurate ocr method.

•	 Formatted Text & Graphics - Acrobat replaces each full-page image with real text
and line art, doing its best to match the original font.

5.	 Select a language to be used in the ocr conversion.

	 Acrobat 7 provides a list of a dozen or so languages from which you may choose.

6.	 Pick a resolution to which Acrobat can reduce the image when doing the ocr.

	 When Acrobat performs ocr, it reduces the resolution of the
image to speed up the processing. The lower the downsampled
resolution, the faster the processing, but the less-accurate will
be the character recognition. I’d leave this at 600 dpi, myself.

6.	 Click the OK button to return to the Recognize Text dialog box.
													 Next Page ->

Acumen Journal: Acrobat User	 �

Page Capture

7.	 Click the OK button to start the ocr process.

Acrobat will process the bitmapped pages.

If you chose to make a searchable image, the resulting pdf pages will look the same as
they did before, but now all of the text tools will work on the apparently bitmapped text.
You can search the text, select it with the Select tool, and copy the selection. Of course,
what the text tools are really operating on is the underlying text layer.

If you chose to convert the document to text and graphics, you will be looking at a
document with real text and line art.

OCR Suspects It often happens, when analyzing a document, that Acrobat encounters character
bitmaps that it can’t identify; that character’s image might be malformed or the font is
too unsual for Acrobat to recognize its character shapes. A section of the page image
that Acrobat cannot analyze is called an ocr suspect.

Acrobat leaves ocr suspects as bitmaps in-line with
the ocr-generated text; in the illustration at right, the
letter “a” is a suspect.

Once you have had Acrobat convert a scanned page to text (whether to a searchable
image or to text and graphics), you should examine all of the page’s ocr suspects and
correct Acrobat’s identification of the characters.

Acrobat makes it easy to examine and correct all the document’s ocr suspects.
													 Next Page ->

Acumen Journal: Acrobat User	 �

Page Capture

Correcting OCR Suspects To correct the ocr suspects do the following:

1.	 Select Document>Recognize Text using
OCR>Find First OCR Suspect.

	 Acrobat will higlight the first suspect
in the document and displays the Find
Element dialog box (below, right).

	 This dialog box presents you with a
close-up of the unidentified bitmap, a
Suspect text field, showing Acrobat’s
best guess as to what characters the
bitmap represents, and four buttons
that let you tell Acrobat what to do
with the ocr suspect.

2.	 Correct Acrobat’s interpretation of
the the suspect in the Suspect field (if
appropriate) and click on one of the
four buttons:

•	 Not Text tells Acrobat that the bitmap doesn’t represent text (perhaps it’s an icon)
and Acrobat should leave it unchanged.

Next Page ->

Acumen Journal: Acrobat User	 �

Page Capture

•	 Find Next tells Acrobat to move on to the next suspect. The bitmap will remain on
Acrobat’s list of suspects and will be displayed the next time you look through the
ocr suspects.

•	 Accept and Find tells Acrobat to replace the bitmap with whatever text is in the
Suspect field and then move to the next suspect. You can change the text in the
Suspect field before clicking this button.

•	 Close finishes the dialog box, returning you to the pdf page.

Repeat the above steps for each ocr suspect. When you have finished, Acrobat will
present you with a dialog box telling you there are no more suspects to be found.

Batch Converting
Files Most people who are converting paper documents to pdf have a lot of such documents

to convert. Doing them by hand, one-by-one gets boring after the first thousand pages,
which makes it all the sweeter that you can use the icr feature in an Acrobat batch
sequence; this would let you convert a whole folder of scanned files at once.

This is too useful to not do, so let’s see how we go about it.

Next Page ->

Acumen Journal: Acrobat User	 �

Page Capture

Creating the
OCR Sequence Acrobat does not ship with Page Capture batch sequence, so we need to create one.

Do the following:

1.	 Select Advanced>Batch Processing.

	 At least, that’s where Batch Processing is located in Acrobat 7. Adobe playfully changes
its location in each new version of Acrobat, so you may need to look around for it. It’s
there some where if you have Acrobat 5 or later.

	 Once you find and select the menu
item, Acrobat will display the Batch
Sequences dialog box. This lists all of
the batches available to your copy of
Acrobat.

2.	 Click the New Sequence button.

	 Acrobat will ask you for a name for
the new batch (lower right).

3.	 Type a name into the text field and click ok.

	 Acrobat will display the Edit Batch Sequence
dialog box (next page).

Next Page ->

Acumen Journal: Acrobat User	 10

Page Capture

	 This dialog box lets you specify the
details of your sequence: the actions it
should perform, on what files it should
operate, and where it should put the result.

4.	 Click the Select Commands button.

	 Acrobat will display the Edit Sequence
dialog box (lower right).

5.	 In the left pane, select Recognize Text
Using ocr and click the Add button.

	 Acrobat will add this step to the sequence, listing it in the right pane.

6.	 Click the Edit button
to get the Recognize
Text dialog box we
described earlier (next
page) and specify the
type of conversion
and other settings you
want for this batch’s
conversion.

Next Page ->

Acumen Journal: Acrobat User	 11

Page Capture

	 Click the ok button to return to
the Edit Sequence dialog box.

7.	 Click that dialog box’s ok button
to return to the Edit Batch
Sequence dialog box, which now
displays our new sequence.

8.	 In the Run Commands On
pop-up menu, tell Acrobat
where to look for the files the
sequence should process.

	 This menu gives you several
choices:

	 If you have a “hot folder”
reserved for scanned docu-
ments needing conversion, you would choose Selected folder and then click the
Choose button to select a folder. When you later trigger the sequence, the ocr action
will be applied to all image files in that folder.

Next Page ->

Acumen Journal: Acrobat User	 12

Page Capture

9.	 In the Select output location pop-up menu, specify where
Acrobat should put the converted pdf files. The choices,
at right, are reasonably self-explanatory.

10	 Click ok to return to the Batch Sequences dialog box,
which now displays your new sequence.

Running the
Sequence Having defined your sequence, you can

run it any time you wish by selecting
Advanced>Batch Sequences and then
double-clicking your sequence in the
resulting Batch Sequences dialog box.

(You can also select the sequence in the
list and click the Run Sequence button, of
course.)

This batch sequence makes it much less
tedious to convert a large number of scanned documents to text. Just place the scan
files into your sequence’s source folder, run the sequence in Acrobat, and stand back!

Return to Main Menu

Acumen Journal: PostScript Tech	 13

Explicitly Masked Images, Part 2
Last June, we started a discussion
of explicitly masked images, a
PostScript Level 3 feature that
allows an image dictionary to be
accompanied by a mask dictionary,
whose data indicate what part of the image should be printed.

In the first half of this topic, we discussed the basics of how explicitly masked images
work in PostScript. We examined ImageType 3 image dictionaries and the contents of
the image and mask dictionaries they contain.

The previous article used techniques appropriate only to small images and masks; in
particular, the previous article’s examples provided image and mask data as strings,
which is completely inappropriate to real-world images.

This month, we fix this, seeing how to use actual scan data in an explicitly masked image.

Reading Assignment This article assumes that you are have read three other Journal articles: the previous part
of this series, in the June 2006 Journal and the two-part series on the SubFileDecode
filter, in the June and July 2002 issues of the Journal. Read these articles before
continuing here, since we have some relatively chewy stuff to discuss this week.

Next Page ->

PostScript Tech

Acumen Journal: PostScript Tech	 14

Explicitly Masked Images, Part 2

ReusableStream
Decode Filter The problem we were left with last time was how to get the data for a real image to the

image operator. In a regular image, we would usually read the data directly from the
input stream, usually through a decoding filter of some flavor:

<<
	 /ImageType 1
	 ...
	 /DataSource currentfile /ASCII85Decode filter
	 ...
>> image
J/OJ!UDc!rBgo(r$KG#1>&d!4%M9@`.9pCQ.ue...

This technique won’t work for a masked image, because our ImageType 3 image needs
to process two sets of data—the image and the mask—simultaneously. In the earlier
issue’s examples, we solved this by supplying the image and mask data as strings, which
can be processed as needed by the image mechanism. However, PostScript strings have
a limit of 64K, which isn’t nearly large enough for a real-world image.

The solution to the problem is to make use of a filter introduced in Level 3:
ReusableStreamDecode.

Next Page ->

Acumen Journal: PostScript Tech	 15

Explicitly Masked Images, Part 2

How it works ReusableStreamDecode is an interesting little guy. When you attached the filter to a file,

	 myFileObj /ReusableStreamDecode filter

the filter operator reads the entire contents of the file into vm and returns a filtered
fileobject that represents that data in memory. This fileobject behaves in every way as
though it were associated with a real, read-only file on the rip’s hard disk; in particular, you
can read data from it and then reposition the file pointer so you can read the data again.

ReusableStreamDecode can take an optional parameters dictionary as an argument; this
dictionary specifies another filter through which the source file’s data should be passed
before being placed in vm. For example, the following would pass the data taken from
myFileObj through the ASCII85Decode filter before storing it in vm:

	 myFileObj
	 << /Filter /ASCII85Decode >>
	 /ReusableStreamDecode filter

The parameter dictionary may also have a DecodeParms dictionary that holds parameters
for the internally-applied filter. (In the above example, ASCII85Decode takes no parameters,
so we don’t need a DecodeParms entry.)

We are going to use the ReusableStreamDecode filter to store the image and mask data
in vm as a pair of “virtual fileobjects.” We will then hand these virtual file objects to the
image operator as the data sources it needs.

Next Page ->

Acumen Journal: PostScript Tech	 16

Explicitly Masked Images, Part 2

Reading from currentfile We want ReusableStreamDecode read data from currentfile and place that data into
vm. The problem is that the filter will read into memory the entire contents of the file to
which it is attached; if we let it, the filter will consume the entire input stream, leaving
no PostScript code for execution.

To prevent this happening—to ensure the ReusableStreamDecode filter reads only the
image data—we will limit the scope of the filter with the SubFileDecode filter. (You did
read the June and July 2002 Journal issues, didn’t you? You ‘ll need it for the following.)

We shall have ReusableStreamDecode read its data through a SubFileDecode filter that
defines logical end-of-file to be the stream of characters “**EOD**”. ReusableStreamDecode
will stop reading from the stream when those characters pass through it. The code will
look something like this:

currentfile	 	 	 	 	 % Read data from currentfile
<<	 /Filter /SubFileDecode		 % Pass the data thru SubFileDecode
	 /DecodeParms <<	 	 	 % ...with the following parameters:
	 	 /EODString (**EOD**)	 % ...EOF is marked by “**EOD**”
	 	 /EODCount 0	 	 	 % ...Ignore zero instances of **EOD**
	 >>
>>
/ReusableStreamDecode filter	 % The filter starts reading data
This is data that is being read into VM. This will be
image data in our final code.
EOD	 	 	 	 	 	 % Here’s the logical end-of-file
% And now we are back to executable PostScript

showpage		 	 	 	 	 	 	 	 	 	 	 Next Page ->

Acumen Journal: PostScript Tech	 17

Explicitly Masked Images, Part 2

The Code Here’s the annotated code for the “London”
masked image. Refer to the May 2006 article for
the details on each of the entries in the various
image dictionaries.

/LondonImage	 % Image data virtual file
	 currentfile << /Filter /ASCII85Decode >> /ReusableStreamDecode
	 filter
J/OJ!UDc!rBgo(r$KG#1>&d!4%M9@`.9pCQ.ue5=Hr`*?2T...
...

/LondonMask	 % Mask data virtual file; this is the 1-bit text image
	 currentfile << /Filter /ASCII85Decode >> /ReusableStreamDecode
	 filter
J3Vsg3$]7K#D>EOLfdV7*=m^sU(KA\&\f’>6kSsVj=,d’O?o...
...

/TheImage		 <<	 	 % The image data’s image dictionary
	 /ImageType	 1	 	 % Type 1 image
	 /Width	 	 393	 	 % Width & height of the image in samples
	 /Height	 	 281
	 /BitsPerComponent 8	 % 8 bits each of r, g, & b
	 /Decode [0 1 0 1 0 1]	 % Map data into color
	 /ImageMatrix [393 0 0 -281 0 281]	% Map into 1-unit square
	 /DataSource LondonImage /LZWDecode filter	 % Data source
>> def	 	 	 	 	 	 	 	 	 	 	 	 Next Page ->

Sample Files

As usual, this issue’s
sample files are on the
Acumen Training Resources
page. Look for the file
LondonMasked.zip.

http://www.acumentraining.com/resources.html

Acumen Journal: PostScript Tech	 18

Explicitly Masked Images, Part 2

/TheMask	 	 	 	 	 % The Mask data’s image dictionary
<<	 /ImageType 1
	 /Width	 	 393
	 /Height	 	 281
	 /BitsPerComponent 1
	 /Decode [0 1]
	 /ImageMatrix [393 0 0 -281 0 281]
	 /DataSource LondonText /LZWDecode filter
>>def

/DeviceRGB setcolorspace	 % We are printing a color image
100 100 translate	 	 	 % Location of the image
393 281 scale		 	 	 % Size of the image
<<	 	 	 	 	 	 % Now we print the masked image
	 /ImageType 3	 	 	 % Explicitly masked image
	 /InterleaveType 3	 	 % The mask is a separate image
	 /DataDict TheImage		 % The image dictionary
	 /MaskDict TheMask	 	 % The mask dictionary
>>
image	 	 	 	 	 % Call the image operator

showpage

Most of this we saw last time. What’s new is the use of the ReusableStreamDecode
“virtual file objects” as our sources of the image and mask data.

Next Page ->

Acumen Journal: PostScript Tech	 19

Explicitly Masked Images, Part 2

One point of possible confusion when you read the code: the original image data was
lzw compressed and then converted to ASCII85. ReusableStreamDecode read the data
through the ASCII85Decode filter, which undid the ASCII85 encoding; the data written to
memory was lzw compressed image data.

To use this compressed image data, we needed to attach the LZWDecode filter to our
virtual file objects. Thus, for the image dictionary, we had

	 /DataSource LondonImage /LZWDecode filter

Using Less VM One of the nice thing about the way PostScript does standard images is that the amount
of vm has no bearing on the printing of the image. Since the image data is read directly
from the input stream and is never stored wholly in vm, any PostScript rip can render any
image, regardless of the size of that image.

This is not true of explicitly masked images. Since the rip needs to have both the image
and the mask data available simultaneously, at least one of the sets of data need to be
stored in vm, in our case as a virtual file created with ReusableStreamDecode.

In our previous example, we stored both sets of data in vm, mostly for the sake of clarity
in the code. However, this means we consumed enough vm to store both sets of data.

We can be more efficient in our memory use by storing only one of the sets of data in vm
and feeding the other set of data in-line with the PostScript code, as we usually do. For
choice, we’d store the mask data in vm, since it’s much smaller than the image data.

Next Page ->

Acumen Journal: PostScript Tech	2 0

Explicitly Masked Images, Part 2

Now our PostScript code looks like this (I’m going to abbreviate the parts that haven’t
changed from last time):

The New Code % We have removed the “LondonImage” file, since we’ll read the image
% data directly from the input stream.
/LondonMask	 	 % Mask virtual file; this is the 1-bit text image
	 currentfile << /Filter /ASCII85Decode >> /ReusableStreamDecode
	 filter
J3Vsg3$]7K#D>EOLfdV7*=m^sU(KA\&\f’>6kSsVj=,d’O?o...
...

/TheImage		 <<	 	 	 % The image data’s image dictionary
	 /ImageType	 1	 	 % Type 1 image
	 /Width	 	 393	 	 % Width & height of the image in samples
	 /Height	 	 281
	 /BitsPerComponent 8	 	 % 8 bits each of r, g, & b
	 /Decode [0 1 0 1 0 1]	 % Map data into color
	 /ImageMatrix [393 0 0 -281 0 281]	% Map into 1-unit square
	 /DataSource currentfile	 % Our data source is now currentfile
	 	 /ASCII85Decode filter /LZWDecode filter
>> def

/TheMask	 	 	 	 	 % The unchanged Mask image dictionary
<<	 /ImageType 1
	 ...
	 /DataSource LondonMask /LZWDecode filter

>>def	 	 	 	 	 	 	 	 	 	 	 	 Next Page ->

Acumen Journal: PostScript Tech	2 1

Explicitly Masked Images, Part 2

/DeviceRGB setcolorspace	 % We are printing a color image
100 100 translate	 	 	 % Location of the image
393 281 scale		 	 	 % Size of the image
<<	 	 	 	 	 	 % Now we print the masked image
	 /ImageType 3	 	 	 % Explicitly masked image
	 /InterleaveType 3	 	 % The mask is a separate image
	 /DataDict TheImage		 % The image dictionary
	 /MaskDict TheMask	 	 % The mask dictionary
>>
image	 	 	 	 	 % Call image, followed by image data
J/OJ!UDc!rBgo(r$KG#1>&d!4%M9...
...
...D5N-(L^3~>

showpage

Now, when image needs image data, it will read it one input-buffer-full at a time, with
no impact on vm.

Masked images: Cool Masked images are under-used in PostScript, which is a pity, since they are a common
effect in graphic arts. The alternative to using ImageType 3 is to do the masking ahead
of time—in Photoshop, perhaps—and then print the result as a standard ImageType 1
image. That has the benefit that the image will print on any PostScript Level 2 printer,
where ImageType 3 is restricted to PostScript Level 3.

But it wouldn’t impress your friends half as much.				 Return to Main Menu

Schedule of Classes, October 2006–January 2007
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class on
the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student.	 Registration Info

PDF File Content
and Structure 1

Nov 13-16 Jan 22-25

PDF File Content
and Structure 2

Nov 28-Dec 1

PostScript
Foundations Oct 30 - Nov 2 Sept 4–8

Variable Data
PostScript

Advanced
PostScript

PostScript for
Support Engineers Jan 8-12

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule�

New
-ish

!

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html

Acrobat Class Schedule

Regretfully, I have suspended teaching Acrobat classes.

However, watch this space!

							 						

												 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule�

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

Acrobat 8 Visual
Quickstart I’m finishing a new book: Acrobat 8 Visual Quickstart Guide, published by Peachpit Press,

due to be on store shelves in November. It’s a beginner’s book on how to do all the
things you most commonly will want to do with Acrobat 8, covering the gamut from
opening and navigating pdf files through digitally signing documents to converting
paper documents to pdf. (Well, alright; we covered that last in this issue of the Journal.)

Here are the chapter titles:

1.	 Starting Acrobat			 9. Adding & Changing Text & Graphics
2.	 Viewing PDF Documents		 10. Adding Basic Navigation Features
3.	 Saving and Printing			 11. Acrobat Presentations
4.	 Making PDF Files			 12. Orgainizing Sets of Documents
5.	 Adding Comments			 13. Creating Acrobat Forms
6.	 Reading Commented Docs	 14. Password Protection
7.	 Conducting Group Reviews	 15. Digital Signatures
8.	 Manipulating PDF Pages		 16. Converting Paper Documents

You will want to buy several of these, just so you can admire their spines on your bookshelf.

												 Return to First Page

What’s New?

Acumen Journal: What’s New?

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you
wonder if something was lost in the translation into English?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

	 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

Acrobat User

Acumen Journal

Acumen Journal

Edit Batch Sequence Dialog Box

Acumen Journal

Edit Sequence Dialog Box

	btnHome:
	btnPrevPage:
	btnNextPg:
	btnNextPage:

