
Table of Contents

The Acrobat User JavaScript: Adding Menu Items to Acrobat
The Acrobat JavaScript interface allows us to add items to the
various menus in Adobe Acrobat. To demonstrate, we’ll add a
“Flatten pages” command to the Document menu.

PostScript Tech Drawing Dotted Lines with setlinecap and setdash.
PostScript allows us to stroke paths with a dashed line, but does not give us direct support for
dotted lines, made up of little round dots. This month we look at an easy, but unobvious, trick
for producing dotted lines.

Class Schedule October, November, December, January

What’s New? New Class Scheduled in December
The first PDF File Contents and Structure 2 class is scheduled for December.

Contacting Acumen Telephone number, email address, postal address

Journal feedback: suggestions for articles, questions, etc.

Acumen Journal, Issue 40 © 2005 John Deubert, Acumen Training					�

John Deubert’s Acumen Journal, September 2005

Short Articles This Month

This month’s articles are
pretty short. I’m up to my
ears working on the PDF
File Content and Structure 2
class.

I expect to have the new
class ready to teach in
November.

Acrobat User

Acumen Journal: Acrobat User	 �

JavaScript: Adding Menu Items to Acrobat
Acrobat’s JavaScript capabilities are remarkably powerful. One often-ignored tool that
JavaScript puts into programmers’ hands is the ability to modify Acrobat’s menus. It is
possible to add or remove menu items from Acrobat itself, allowing you to add your
favorite JavaScripts to one of Acrobat’s user interface.

This month, we shall see how to do this. Specifically,
we shall add two commands to the Document menu,
both based on last month’s article on flattening pdf
comments:

•	 Flatten current page, which will flatten all the
comments on the currently-visible page.

•	 Flatten all pages, which will flatten all comments
throughout the document.

You may wish to reread the previous Journal article on flattening comments, although
this isn’t actually necessary in order to follow this month’s discussion. This article does
assume you have minimal JavaScript skills, equivalent to having read my book Extending
Acrobat Forms With JavaScript. (You have read it, haven’t you?)

The JavaScript we write will be unusual in that it may be executed only as a folder script,
a JavaScript that Acrobat is executes at startup time.

Let’s see how we do this.									 Next Page ->

Acumen Journal: Acrobat User	 �

Adding Menu Items to Adobe Acrobat

App.addMenuItem The JavaScript command with which you add items to an Acrobat menu is the App
object’s addMenuItem method:

app.addMenuItem({cName: “itemName”,
						 cParent: “menuName”, cExec: “fcnName”})

This method takes a relatively large number of named arguments, some of them optional;
the most important are:

cName: “itemName”
This is the text of the item that should be put into the menu.

cParent: “menuName”
This is the name of the menu to which the item should be added.

cExec: “jsCode”
This is a snippet of JavaScript code that should be executed when the user
selects this menu item. Often, this will simply call a JavaScript function
defined elsewhere in the script.

nPos: itemPosition											 (Optional)
The position within the menu where the new item should be placed; if you
don’t supply this number, the item will be appended to the end of the menu.

There are additional arguments that you may supply to addMenuItem; I shall refer you to
the Acrobat JavaScript Object Reference for the details on these.

Next Page ->

Acumen Journal: Acrobat User	 �

Adding Menu Items to Adobe Acrobat

Using addMenuItem Here is a script that adds our Flatten Comments items to the Document menu:

// First define a function that flattens document pages; this is the
// function that carries out our menu items’ itent.
function Flatten(boolCurrentPageOnly)	 // Takes a boolean argument
{
	 var i
	
	 // Give them a chance to back out
	 i = app.alert("Are you sure you want to do this?", 1, 2)
	
	 if (i != 3)	 {				 // If they didn’t click "No"...
		 if (boolCurrentPageOnly)	 // Flatten either this page...
			 this.flattenPages(this.pageNum)
		 else
			 this.flattenPages()	 // ...or all pages
	 }
}

// Now add our two menu items to the Document menu
app.addMenuItem({ cName: “Flatten current page”,
				 cParent: “Document”, cExec: “Flatten(true)”});
app.addMenuItem({ cName: “Flatten all pages”,
				 cParent: “Document”, cExec: “Flatten(false)”});

Next Page ->

Acumen Journal: Acrobat User	 �

Adding Menu Items to Adobe Acrobat

Discussion This script has two parts:

•	 The definition of a function named Flatten, which takes a Boolean argument and flattens
all of the comments on the current page or in the entire document, depending upon
the Boolean’s argument.

•	 A pair of calls to the App object’s addMenuItem method that add two items to the
Acrobat Document menu.

Let’s look at the script in detail:

Step by Step function Flatten(boolCurrentPageOnly)	 // Takes a boolean argument
{

Our function, Flatten, will take a single Boolean argument. This argument dictates
whether we flatten only the current page (true) or the entire document (false).

i = app.alert("Are you sure you want to do this?", 1, 2)

We display a warning that gives the user
a chance to back out of the command.
This is important since, once the com-
ments have been flattened, they can’t
be put back again.

Remember that app.alert returns an
integer indicating which button the user clicked in the dialog box.		 Next Page ->

Acumen Journal: Acrobat User	 �

Adding Menu Items to Adobe Acrobat

if (i != 3)	 {
	 ...
}

The app.alert method returns a value of 3 if the user clicks the alert’s No button; this
value was placed in the variable i. We will want to flatten the comments only if i is not 3.

if (boolCurrentPageOnly)
	 this.flattenPages(this.pageNum)
else
	 this.flattenPages()

We then call the Doc object’s flattenPages method either with or without a page number,
depending on the value of the function’s Boolean argument, boolCurrentPageOnly.

This conditional call to flattenPages ends our Flatten function.

app.addMenuItem({ cName: “Flatten current page”,
				 cParent: “Document”, cExec: “Flatten(true)”});

We now make our first call to app.addMenuItem, add-
ing a menu item that will flatten the current page. We
set three of the method’s arguments, as follows:

cName: “Flatten current page”
This is the text that appears in the menu.

cParent: “Document”
We add the item to the Document menu.

Next Page ->

flattenPages

See the June 2005 Journal
for a discussion of the
Doc object’s flattenPages
method.

Acumen Journal: Acrobat User	 �

Adding Menu Items to Adobe Acrobat

cExec: “Flatten(true)”
If the user selects this menu item, we execute our Flatten function, handing
it the argument value true. This will flatten comments on the current page.

app.addMenuItem({ cName: “Flatten all pages”,
				 cParent: “Document”, cExec: “Flatten(false)”});

Our second call to app.addMenuItem is similar to the first. We have a slightly different
name for this menu item and we are passing false to the Flatten function causing that
function to flatten all the comments in the document.

Folder Scripts
We can’t use this

script just anywhere So now we have a script that creates our “flatten pages” menu items. Where do we put
this script? Therein lies a serious, though reasonable, restriction: app.addMenuItem can
only be executed when Acrobat starts up; it is ignored if we execute it when Acrobat is
already running.

The javascripts folder Upon startup, Acrobat looks inside a predefined folder named javascripts and executes
any files in there that have a suffix of .js. To have our script executed at startup time, we
simply have to place the js file into the javascripts folder. The trick is locating this folder.

It’s easy in Windows: the javascript folder resides in the same folder as Adobe Acrobat.

Next Page ->

Acumen Journal: Acrobat User	 �

Adding Menu Items to Adobe Acrobat

It is less straightforward to find this folder on the Mac. Through Acrobat 5, the javascript
folder was located in the Acrobat folder, as in Windows. In both Acrobat 6 and 7, Adobe
made the situation a bit more complex:

•	 In Acrobat 6, folder javascripts should go into ~/Library/ Acrobat User Data/javascripts,
where “~” signifies your home directory, as usual.

•	 In Acrobat 7, the javascript folder is ~/Library/Acrobat User Data/7.0/javascripts.

This wasn’t just random madness on Adobe’s part;
the goal was to restrict the scripts to the computer’s
current user, rather than being globally forced on all
users. This is an important security feature, given the
broad capabilities of JavaScript in Acrobat.

Note that your file must be suffixed .js for Acrobat to
recognize it as containing a JavaScript.

Other Interface
Modification The Acrobat JavaScript interface allows you to make considerable modification to

Acrobat’s interface. It’s particularly easy to add submenus (app.addSubMenu) and even
your own toolbar buttons (app.addToolButton).

But I’ll let you explore those on your own.

Return to First Page

Acumen Journal: PostScript Tech	 �

Drawing Dotted Lines in PostScript
PostScript lets you stroke paths with dashed lines of reasonable
complexity, as in the box at right. You do this by calling the
setdash operator, which specifies the details of the dashed line
you want stroke to use.

What is trickier to achieve is to stroke a path with a dotted line,
made up of little round dots running along the path, as at right.

This month’s short article will demonstrate a trick by which you can produce this effect.
The trick is based upon the behaviors of two PostScript operators: setdash and (seemingly
unrelated) setlinecap.

We’ll start with setlinecap.

Next Page ->

Dash it all!

Dot’s alright!

PostScript Tech

Acumen Journal: PostScript Tech	 10

Creating Dotted Lines

setlinecap The setlinecap operator allows a PostScript program to specify how the endpoints of
stroked lines should be rendered. The operator takes an integer code as its argument:

	 n setlinecap

This integer may have values 0, 1, or 2, each specifying a different type of line ending, as
follows:

0	 Butt caps - Stroked lines are simply chopped off at the
endpoints. This is PostScript’s default behavior.

1	 Round caps - PostScript draws semicircular caps at each
endpoint, as illustrated at right.

2	 Extended caps - This is identical to butt caps, but the
stroked line extends half the line width beyond the ends
of the current path.

The current linecap resides in the graphics state and so is subject to gsave and grestore.
Also, the linecap is applied at stroke time, not when you construct the path, so if you call
setlinecap several times, stroke will apply whichever linecap is current.

Next Page ->

Acumen Journal: PostScript Tech	 11

Creating Dotted Lines

setdash The setdash operator specifies the dash pattern that stroke should apply to the current path.
The default pattern, of course, is a solid line; but the setdash operator allows you to specify
quite elaborate patterns of painted and unpainted segments for the stroked path.

The setdash operator takes two arguments, an array and a number:

	 [dash array] offset setdash

The dash arrays specifies the details of what the dashed line should look like; the offset
indicates how the dash pattern should be positioned on the path.

Let’s look at these in detail.

Dash Array The dash array contains a series of numbers, indicating the lengths of the alternating
painted and unpainted parts of the dashed line. Thus, the following call to setdash

	 [12 18 6 6] 0 sedash

would yield the dashed line illustrated above right, made up of the following pattern:
paint 12 units, skip 18 units, paint 6 units, skip 6 units, repeat to the end of the path.

Next Page ->

Acumen Journal: PostScript Tech	 12

Creating Dotted Lines

Offset The offset argument specifies how much of the
pattern should be skipped at the starting endpoint.

At right, we have the same 12-18-6-6 dash pattern
with a variety of offsets. When the offset is 0, the
beginning of the path corresponds to the start of
the first dash pattern. When the offset is 6, the iniitial endpoint starts 6 units into the
pattern; we are missing half of the first 12-point dash in the painted line.

So, Dots? The first secret to producing a dotted line is that PostScript applies the current linecap to
each of the painted segments in the dashed line. At right
is a dashed line with a linecap of 0 (top) and 1 (bottom).
Note that each of the dashes has in the second line has
rounded caps on either end.

The second secret is that a dash length of 0 is perfectly acceptable within a dash array;
those segments will have lengths of zero. The surprise is that these zero-length dashes
will have the current linecap applied to them; a zero-
length dash with rounded caps is a dot.

Next Page ->

[12 18 6 6] 0 setdash

[12 18 6 6] 4 setdash

[12 18 6 6] 8 setdash

[12 18 6 6] 12 setdash

Acumen Journal: PostScript Tech	 13

Creating Dotted Lines

For example So, to stroke a rectangle with a dotted line, we could do the following:

8 setlinewidth
1 setlinecap
[0 16] 0 setdash	 % 0-length dash; 16-pt gap

.5 1 .75 setrgbcolor
100 600 100 50 rectstroke

showpage

Easy, isn’t it?

Return to First Page

Schedule of Classes, October–December 2005
Following are the dates of Acumen Training’s upcoming PostScript and PDF Technical
classes. Clicking on a class name below will take you to the description of that class on
the Acumen training website.

These classes are taught in Orange County, California and on corporate sites world-wide.
See the Acumen Training web site for more information.

Technical Classes

Course Fee The PostScript and PDF classes cost $2,000 per student.	 Registration Info

PDF File Content
and Structure 1

Nov 7–10

PDF File Content
and Structure 2

Dec 12–15

PostScript
Foundations Jan 9–13, ‘06

Variable Data
PostScript Oct 3–7

Advanced
PostScript

PostScript for
Support Engineers On-site only

PostScript & PDF Class Schedule

Acumen Journal: Technical Class Schedule�

New
!

http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF2.html
http://www.acumentraining.com/Descr_TechPDF2.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/descr_psf.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_vdps.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_APS.html
http://www.acumentraining.com/Descr_PSSE.html
http://www.acumentraining.com/Descr_PSSE.html

Acrobat Class Schedule

These classes are taught occasionally in Costa Mesa, California, and on corporate sites.
Clicking on a course name below will take you to the class description on the Acumen
Training web site.

Acrobat Essentials No Acrobat classes scheduled for this quarter. See the Acumen Training website regarding
setting up an on-site class.

Interactive Acrobat

Creating Acrobat Forms

Acrobat Class Fees Acrobat Essentials and Creating Acrobat Forms (½-day each) cost $180.00 or $340.00
for both classes. There is a 10% discount if three or more people from the same
organization sign up for the same class. 		

							 						 Registration ->

												 Return to Main Menu

Acrobat Class Schedule

Acumen Journal: Acrobat Class Schedule�

http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/onsite.html
http://www.acumentraining.com/descr_acroess.html
http://www.acumentraining.com/descr_intacro.html
http://www.acumentraining.com/descr_AcroForms.html

Contacting John Deubert at Acumen Training

For more information For class descriptions, on-site arrangements or any other information about Acumen’s classes:

Web site: http://www.acumentraining.com	 email: john@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Registering
for Classes To register for an Acumen Training class, contact John any of the following ways:

Register On-line: http://www.acumentraining.com/registration.html

email: registration@acumentraining.com

telephone: 949-248-1241

mail: 24996 Danamaple, Dana Point, CA 92629

Back issues All issues of the Acumen Journal are available at the Acumen Training website:
http://www.acumenjournal.com/AcumenJournal.html

Return to First Page

Contacting Acumen Training

Acumen Journal: Contacting Acumen Training

http://www.acumentraining.com
mailto:john@acumentraining.com
http://www.acumentraining.com/registration.html
mailto:registration@acumentraining.com
http://www.acumentraining.com/AcumenJournal.html

What’s New at Acumen Training?

PDF File Content
& Structure 2

Scheduled The first pdf File Content and Structure 2 class is scheduled for December 12. The course
description page for this class will be up and running before the end of the month. The
topic list is still subject to change, but the following are very likely to be covered in class:

Overprinting			 File Specification		 Multibyte fonts
Masked Images			 Halftones			 Linearized PDF
Marked Content			 AcroForms			 Rendering Intents
Transfer Functions		 Functions dictionaries	 Smooth shading
Shape dictionaries 		 Xref streams		 Object streams
Name Dictionaries		 More on data structures

The prerequisite for this class is the PDF File Content and Structure 1 class.

 If you are curious about the flavor of PDF File Content & Structure 2 class, I have posted a
sample chapter from the student notes on the Acumen Training Resources page. Look
among the pdf resources for “PDF FC&S Sample.pdf.” The chapter included is that on pdf
file specification. This may take a couple of days for me to get up on the site.

												 Return to First Page

What’s New?

Acumen Journal: What’s New?

http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/Descr_TechPDF.html
http://www.acumentraining.com/resources.html

Journal Feedback
If you have any comments regarding the Acumen Journal, please let me know. In
particular, I am looking for three types of information:

Comments on usefulness. Does the Journal provide you with worthwhile information?
Was it well written and understandable? Do you like it, hate it? Did it make you
remember fondly your last root canal?

Suggestions for articles. Each Journal issue contains one article each on PostScript
and Acrobat. What topics would you like me to write about?

Questions and Answers. Do you have any questions about Acrobat, pdf, or PostScript?
Feel free to email me about. I’ll answer your question if I can. (If enough people ask the
same question, I can turn it into a Journal article.)

Please send any comments, questions, or problems to:

	 journal@acumentraining.com

Return to Menu

Feedback

Acumen Journal: Feedback

mailto:journal@acumentraining.com

	btnHome:
	btnPrevPage:
	btnNextPg:

